Voting theory, decision theory �and �multi-criteria decision analysis (MCDA)
Conjoint measurement
aka
multi-Criteria Decision Aid
multi-Criteria Decision Making (MCDM)
Multi-Criteria Decision Analysis (MCDA)
A DM wants to rank the alternatives (or identify the best one).
Many methods in Management Science and Operations Research:
MAUT, MAVT, WSM, ELECTRE, AHP, ANP, DEMATEL, VIKOR, COPRAS, MULTIMOORA, TOPSIS, fuzzy TOPSIS, PROMETHEE, TACTIC, …
Alternatives |
x |
y |
z |
w |
70 | good | 0.05 |
55 | fair | 0.05 |
31 | good | 0.03 |
30 | excellent | 0.07 |
Criterion 1 | Criterion 2 | Criterion 3 |
MAVT
Alternatives | Criterion 1 | Criterion 2 | Criterion 3 |
x | 70 | good | 0.05 |
y | 55 | fair | 0.05 |
z | 31 | good | 0.03 |
w | 30 | excellent | 0.07 |
How to choose the parameters vi and wi ?
E.g. midvalue splitting: find s < 70 on criterion 1 and t > 0.03 on criterion 3 s.t.
MAVT
Alternatives | Criterion 1 | Criterion 2 | Criterion 3 |
x | 70 | good | 0.05 |
y | 55 | fair | 0.05 |
z | 31 | good | 0.03 |
w | 30 | excellent | 0.07 |
How to choose the parameters vi and wi ?
E.g. midvalue splitting: find s < 70 on criterion 1 and t > 0.03 on criterion 3 s.t.
( 70 , good , 0.03) ~ ( s , good , t )
MAVT
Alternatives | Criterion 1 | Criterion 2 | Criterion 3 |
x | 70 | good | 0.05 |
y | 55 | fair | 0.05 |
z | 31 | good | 0.03 |
w | 30 | excellent | 0.07 |
How to choose the parameters vi and wi ?
E.g. midvalue splitting: find s < 70 on criterion 1 and t > 0.03 on criterion 3 s.t.
( 70 , good , 0.03) ~ ( s , good , t ) AND ( s , good , 0.03) ~ ( 30 , good , t )
MAVT
Alternatives | Criterion 1 | Criterion 2 | Criterion 3 |
x | 70 | good | 0.05 |
y | 55 | fair | 0.05 |
z | 31 | good | 0.03 |
w | 30 | excellent | 0.07 |
How to choose the parameters vi and wi ?
E.g. midvalue splitting: find s < 70 on criterion 1 and t > 0.03 on criterion 3 s.t.
( 70 , good , 0.03) ~ ( s , good , t ) AND ( s , good , 0.03) ~ ( 30 , good , t )
ELECTRE (simplified)
Alternatives | Criterion 1 | Criterion 2 | Criterion 3 |
x | 70 | good | 0.05 |
y | 55 | fair | 0.05 |
z | 31 | good | 0.03 |
w | 30 | excellent | 0.07 |
Step 1. One preference relation per criterion: ≿i (≻i / ~i)
x ≻1 y ≻1 (z ~1 w)
w ≻2 (x ~2 z) ≻2 y
w ≻3 (x ~3 y) ≻3 z
3 parameters (indifference thresholds)
q1 = 2, q2 = 0 , q3 = 0
ELECTRE (simplified)
Step 1. One preference relation per criterion: ≿i (≻i / ~i)
x ≻1 y ≻1 (z ~1 w)
w ≻2 (x ~2 z) ≻2 y
w ≻2 (x ~2 y) ≻2 z
Step 2. Weighted majority relation: S
a S b if sum of weights supporting a is larger than λ.
3 parameters: w1= 0.25, w2= 0.25, w3= 0.5, λ = 2/3
3 parameters (indifference thresholds)
q1 = 2, q2 = 0 , q3 = 0
ELECTRE (simplified)
Step 1. One preference relation per criterion: ≿i (≻i / ~i)
x ≻1 y ≻1 (z ~1 w)
w ≻2 (x ~2 z) ≻2 y
w ≻2 (x ~2 y) ≻2 z
Step 2. Weighted majority relation: S
a S b if sum of weights supporting a is larger than λ.
3 parameters: w1= 0.25, w2= 0.25, w3= 0.5, λ = 2/3
y vs z : 0.25+0.5 > 2/3 ⇒ y S z and ¬(z S y)
3 parameters (indifference thresholds)
q1 = 2, q2 = 0 , q3 = 0
ELECTRE (simplified)
Step 1. One preference relation per criterion: ≿i (≻i / ~i)
x ≻1 y ≻1 (z ~1 w)
w ≻2 (x ~2 z) ≻2 y
w ≻2 (x ~2 y) ≻2 z
Step 2. Weighted majority relation: S
a S b if sum of weights supporting a is larger than λ.
3 parameters: w1= 0.25, w2= 0.25, w3= 0.5, λ = 2/3
y vs z : 0.25+0.5 > 2/3 ⇒ y S z and ¬(z S y)
x
y
w
z
Step 3. Compute a ‘tournament’ solution (Copeland score or …)
3 parameters (indifference thresholds)
q1 = 2, q2 = 0 , q3 = 0
ELECTRE (simplified)
How to choose the parameters q1 , q2 , q3 , w1, w2, w3, λ ?
Axiomatic characterizations of MCDA methods
Mostly in the framework of
Voting theory
Primitives
MCDA
set of alternatives
set of criteria
performance matrix
Partial holistic preferences ⊵
Conjoint measurement
Primitives
MCDA
MCDA in conjoint measurement (CM) framework
Primitives
Typical result in conjoint measurement
Can we check that ≿ satisfies properties P?
No, but we can impose it (normative properties).
How to construct ≿ containing ⊵ and satisfying P?
No answer in CM. It characterizes relations representable in model M.
It does not characterize an aggregation procedure.
There are many relations ≿ containing ⊵ and satisfying P!
Other problems with conjoint measurement
It is impossible to state properties like
New framework for MCDA
Primitives
New framework for MCDA
Primitives
New framework for MCDA
Primitives
Aggregation method:
Mapping ≿ from E1× E2 × … × En × H × W to ℛ (reflexive relations).
Constraints on assessment structures
pi → δi(pi)
(clean definition uses homomorphism).
and pi’|Y = qi’|Y.
A result without ⊵
≿ ≻ ≻
A result without ⊵
Theorem (building on Myerson, 1995)
Let δi(pi) be complete for all pi ∊ Ei and each criterion i. The only aggregation procedure satisfying all axioms of previous slide is the simple weighted majority, that is
x ≿(p, ⊵, w) y iff
A result with ⊵
∀ i, [¬ y δi(pi) x ⇒ ¬ y δi(qi) x ] and [ x δi(pi) y ⇒ x δi(qi) y ],
then ≿(p, ⊵, w) ⇒ ≿(q, ⊵, w)
∀ i, number of profiles s.t. x δi(pij) y and ¬ y δi(pij) x
= number of profiles s.t. y δi(pij) x and ¬ x δi(pij) y
Then x ≻(pj, ⊵, w) y and y ≻(pk, ⊵, w) x for some j, k.
A result with ⊵
Theorem (building on Fishburn, 1973)
Let δi(pi) be complete for all pi ∊ Ei and each criterion i. If ≿ satisfies
then it is the simple weighted majority, that is,
for all ⊵ ∊ H, there are non-negative real numbers ci⊵ such that
x ≿(p, ⊵, w) y iff
x ≿(p, ⊵, w) y iff
x ≿(p, ⊵, w) y iff