1 of 25

Voting theory, decision theory �and �multi-criteria decision analysis (MCDA)

Conjoint measurement

aka

multi-Criteria Decision Aid

multi-Criteria Decision Making (MCDM)

2 of 25

Multi-Criteria Decision Analysis (MCDA)

A DM wants to rank the alternatives (or identify the best one).

Many methods in Management Science and Operations Research:

MAUT, MAVT, WSM, ELECTRE, AHP, ANP, DEMATEL, VIKOR, COPRAS, MULTIMOORA, TOPSIS, fuzzy TOPSIS, PROMETHEE, TACTIC, …

Alternatives

x

y

z

w

70

good

0.05

55

fair

0.05

31

good

0.03

30

excellent

0.07

Criterion 1

Criterion 2

Criterion 3

3 of 25

MAVT

Alternatives

Criterion 1

Criterion 2

Criterion 3

x

70

good

0.05

y

55

fair

0.05

z

31

good

0.03

w

30

excellent

0.07

How to choose the parameters vi and wi ?

 

  • Direct rating
  • Elicitation techniques with fictitious alternatives.

E.g. midvalue splitting: find s < 70 on criterion 1 and t > 0.03 on criterion 3 s.t.

4 of 25

MAVT

Alternatives

Criterion 1

Criterion 2

Criterion 3

x

70

good

0.05

y

55

fair

0.05

z

31

good

0.03

w

30

excellent

0.07

How to choose the parameters vi and wi ?

 

  • Direct rating
  • Elicitation techniques with fictitious alternatives.

E.g. midvalue splitting: find s < 70 on criterion 1 and t > 0.03 on criterion 3 s.t.

( 70 , good , 0.03) ~ ( s , good , t )

5 of 25

MAVT

Alternatives

Criterion 1

Criterion 2

Criterion 3

x

70

good

0.05

y

55

fair

0.05

z

31

good

0.03

w

30

excellent

0.07

How to choose the parameters vi and wi ?

 

  • Direct rating
  • Elicitation techniques with fictitious alternatives.

E.g. midvalue splitting: find s < 70 on criterion 1 and t > 0.03 on criterion 3 s.t.

( 70 , good , 0.03) ~ ( s , good , t ) AND ( s , good , 0.03) ~ ( 30 , good , t )

6 of 25

MAVT

Alternatives

Criterion 1

Criterion 2

Criterion 3

x

70

good

0.05

y

55

fair

0.05

z

31

good

0.03

w

30

excellent

0.07

How to choose the parameters vi and wi ?

 

  • Direct rating
  • Elicitation techniques with fictitious alternatives.

E.g. midvalue splitting: find s < 70 on criterion 1 and t > 0.03 on criterion 3 s.t.

( 70 , good , 0.03) ~ ( s , good , t ) AND ( s , good , 0.03) ~ ( 30 , good , t )

 

7 of 25

ELECTRE (simplified)

Alternatives

Criterion 1

Criterion 2

Criterion 3

x

70

good

0.05

y

55

fair

0.05

z

31

good

0.03

w

30

excellent

0.07

Step 1. One preference relation per criterion: ≿i (≻i / ~i)

x 1 y1 (z ~1 w)

w 2 (x ~2 z)2 y

w 3 (x ~3 y)3 z

3 parameters (indifference thresholds)

q1 = 2, q2 = 0 , q3 = 0

8 of 25

ELECTRE (simplified)

Step 1. One preference relation per criterion: ≿i (≻i / ~i)

x 1 y1 (z ~1 w)

w 2 (x ~2 z)2 y

w 2 (x ~2 y)2 z

Step 2. Weighted majority relation: S

a S b if sum of weights supporting a is larger than λ.

3 parameters: w1= 0.25, w2= 0.25, w3= 0.5, λ = 2/3

3 parameters (indifference thresholds)

q1 = 2, q2 = 0 , q3 = 0

9 of 25

ELECTRE (simplified)

Step 1. One preference relation per criterion: ≿i (≻i / ~i)

x 1 y1 (z ~1 w)

w 2 (x ~2 z)2 y

w 2 (x ~2 y)2 z

Step 2. Weighted majority relation: S

a S b if sum of weights supporting a is larger than λ.

3 parameters: w1= 0.25, w2= 0.25, w3= 0.5, λ = 2/3

y vs z : 0.25+0.5 > 2/3 ⇒ y S z and ¬(z S y)

3 parameters (indifference thresholds)

q1 = 2, q2 = 0 , q3 = 0

10 of 25

ELECTRE (simplified)

Step 1. One preference relation per criterion: ≿i (≻i / ~i)

x 1 y1 (z ~1 w)

w 2 (x ~2 z)2 y

w 2 (x ~2 y)2 z

Step 2. Weighted majority relation: S

a S b if sum of weights supporting a is larger than λ.

3 parameters: w1= 0.25, w2= 0.25, w3= 0.5, λ = 2/3

y vs z : 0.25+0.5 > 2/3 ⇒ y S z and ¬(z S y)

x

y

w

z

Step 3. Compute a ‘tournament’ solution (Copeland score or …)

3 parameters (indifference thresholds)

q1 = 2, q2 = 0 , q3 = 0

11 of 25

ELECTRE (simplified)

How to choose the parameters q1 , q2 , q3 , w1, w2, w3, λ ?

  • Direct rating
  • Elicitation techniques with fictitious alternatives

12 of 25

Axiomatic characterizations of MCDA methods

Mostly in the framework of

    • Voting theory
    • Conjoint measurement

13 of 25

Voting theory

Primitives

  • Set of candidates X = { x, y, z, … }
  • Set of voters V = {1, 2, …, n}
  • Profile of preferences p = (p1, p1, …, pn)

MCDA

set of alternatives

set of criteria

performance matrix

Partial holistic preferences ⊵

14 of 25

Conjoint measurement

Primitives

  • Attribute i = {x1, y1, …, z1}
  • Set of alternatives X = X1× X2 × × Xn
  • One preference relation ≿ over X

MCDA

  • Set of alternatives is a sparse subset of X1× X2 × × Xn
  • What is ≿ ?
    • The partial holistic preferences ⊵?
    • The final preference relation to be built?
    • Both (if final preferences ⊇ holistic preferences)

15 of 25

MCDA in conjoint measurement (CM) framework

Primitives

  • Set of alternatives X = X1× X2 × × Xn
  • ≿ over X represents final preferences s.t. ⊇ ⊵

Typical result in conjoint measurement

  • If ≿ satisfies some properties P then ≿ can be represented in model M.
  • The representation is in some sense unique.

Can we check that ≿ satisfies properties P?

No, but we can impose it (normative properties).

How to construct ≿ containing ⊵ and satisfying P?

No answer in CM. It characterizes relations representable in model M.

It does not characterize an aggregation procedure.

There are many relations ≿ containing ⊵ and satisfying P!

16 of 25

Other problems with conjoint measurement

It is impossible to state properties like

  • Neutrality
  • Independence of irrelevant alternatives

17 of 25

New framework for MCDA

Primitives

  • Set of alternatives X = { x, y, z, … }
  • Set of criteria C = {1, 2, …, k}
  • One assessment structure on each criterion

18 of 25

New framework for MCDA

Primitives

  • Set of alternatives X = { x, y, z, … }
  • Set of criteria C = {1, 2, …, k}
  • One assessment structure on each criterion
  • a weak order on X
  • a mapping from X to ℝ
  • a mapping from X to {excellent, good, fair, poor}

19 of 25

New framework for MCDA

Primitives

  • Set of alternatives X = { x, y, z, … }
  • Set of criteria C = {1, 2, …, k}
  • One assessment structure on each criterion
  • Ei = set of possible assessment structures on criterion i
  • A profile of assessment structures p = (p1, p1, …, pn) ∊ E1× E2 × × En
  • Holistic preferences: ⊵ (binary relation on X, belonging to H)
  • Exogeneous weights: wW = (+)k \ { (0,…,0) }

Aggregation method:

Mapping ≿ from E1× E2 × × En × H × W to ℛ (reflexive relations).

20 of 25

Constraints on assessment structures

  • Each assessment structure pi defines a reflexive preference relation on criterion i.

pi δi(pi)

  • If π is a permutation of X, there is a natural way to define π(pi) , � a permutation of pi

(clean definition uses homomorphism).

  • If Y is a subset of X with #Y ≥2, there is a natural way to define pi|Y , � the restriction of pi to Y.

  • If δi(pi)|Y = δi(qi)|Y , there exists p’, q’ : δi(pi) = δi(pi) and δi(qi) = δi(qi)

and pi|Y = qi|Y.

21 of 25

A result without ⊵

  • Independence of Holistic Preferences: ≿(p, 1, w) = ≿(p, 2, w)
  • Completeness: for all x, y, we have x ≿(p, , w) y or y ≿(p, , w) x
  • Monotonicity : x ≿(p, , w) y and x ≿(p, , w’) y x ≿(p, , w+w’) y

  • Archimedean: x ≻(p, , w) y ⇒ ∃ β: for α > β, x ≻(p, , αw+w’) y
  • IIA: p|xy = q|xy≿(p, , w)|xy = ≿(q, , w)|xy
  • Ordinality: δi(pi) = δi(qi) for all i ≿(p, , w) = ≿(q, , w)
  • Neutrality: ≿(π(p), π(⊵}, w) = π(≿(p, , w) )
  • Weighted Anonymity: permuting p and w correspondingly has no effect
  • IIC: If p and q differ on criteria with weights = 0, then ≿(p, , w) = ≿(q, , w)

22 of 25

A result without ⊵

Theorem (building on Myerson, 1995)

Let δi(pi) be complete for all piEi and each criterion i. The only aggregation procedure satisfying all axioms of previous slide is the simple weighted majority, that is

x ≿(p, , w) y iff

 

23 of 25

A result with ⊵

  • Ind. of Weights: ≿(p, , w) = ≿(p, , w’)
  • Unanimity: x δi(pi) y and ¬ y δi(pi) x for all i, ⇒ x ≻(p, , w) y
  • Non-negative responsiveness:

i, [¬ y δi(pi) x ⇒ ¬ y δi(qi) x ] and [ x δi(pi) y x δi(qi) y ],

then ≿(p, , w) ≿(q, , w)

  • Strong duality: m profiles p1, …, pm

i, number of profiles s.t. x δi(pij) y and ¬ y δi(pij) x

= number of profiles s.t. y δi(pij) x and ¬ x δi(pij) y

Then x ≻(pj, , w) y and y ≻(pk, , w) x for some j, k.

  • Weak IIA: p|xy = q|xy and ⊵|xy = ⊵|xy≿(p, , w)|xy = ≿(q, , w)|xy

24 of 25

A result with ⊵

Theorem (building on Fishburn, 1973)

Let δi(pi) be complete for all piEi and each criterion i. If satisfies

  • Completeness, Ordinality,
  • Unanimity, Non-negative responsiveness, Strong Duality, IIW, Extended IIA

then it is the simple weighted majority, that is,

for all H, there are non-negative real numbers ci such that

x ≿(p, , w) y iff

 

25 of 25

x ≿(p, , w) y iff

 

x ≿(p, , w) y iff