Building a Mathematical Learning Community
Grade 6
Table of Contents
2. Introduction
3. Overview
4. Building Community Lessons
Slide Deck Purpose
This slidedeck is intended to walk you through building a math community.
The anchor charts you build during these few weeks should be addressed and referred to on a regular basis.
The Minds On and Consolidation activities were designed for you to easily adapt the topic and use them throughout the year, not only in math but in all subject areas.
Class
Whole
Fostering Overall Well-Being
“There is strong evidence that developing social-emotional learning skills at school contributes to all students’ overall health and well-being and to successful academic performance. It also supports positive mental health, as well as students’ ability to learn, build resilience, and thrive”
The Ontario Curriculum, Grades 1-8: Mathematics, 2020
Social Emotional Learning (SEL) is one component of supporting well-being. It is important that we continue to develop positive relationships with peers and caring adults throughout the year.
The five SEL skills that we will be focusing on during the first few weeks, and that will continue through the year are:
*For more information & suggested tasks Click HERE
Introduction
Part 1
Equity, Diversity, & Inclusion
WRDSB educators can build equitable, inclusive, and anti-oppressive learning communities within the framework of Culturally Responsive & Relevant Pedagogy (CRRP). For more information see the WRDSB’s Comprehensive Approach to Mathematics.
“Culturally responsive and relevant pedagogy (CRRP) reflects and affirms students’ cultural and social identities, languages, and family structures. It involves careful acknowledgement, respect, and understanding of the similarities and differences among students, and between students and teachers, in order to respond effectively to student thinking and promote student learning.”
The Ontario Curriculum, Culturally Responsive & Relevant Pedagogy (CRRP)
“In mathematics spaces using CRRP, students are engaged in shaping much of the learning so that students have mathematical agency and feel invested in the outcomes”
Ontario Math Curriculum
Introduction
Part 2
Overview - Week 1
| ||||
SEL Topic(s) | Develop self awareness and sense of identity | Identify and manage emotions and recognize sources of stress and cope with challenges | Identify and manage emotions and recognize sources of stress and cope with challenges | Maintain positive motivation and perseverance |
Intro | Brainstorm: What is math? | Independent work poster: looks like, sounds like, feels like | Video: Believe in yourself | Brainstorm: Helpful and unhelpful thoughts |
Minds On | Which one doesn’t belong? Numbers | Which one doesn’t belong? Images | Number talk: Dots | Number talk: Doubling and Halving |
Action | ||||
Consolidation | ||||
Reflection |
| |||||
SEL Topic(s) | Maintain positive motivation and perseverance | Build relationships and communicate effectively | Build relationships and communicate effectively | Think critically and creatively | Develop self awareness and sense of identity |
Intro | Collaboration poster: looks like, sounds like, feels like | Add sentence starters to Collaboration poster | |||
Minds On | |||||
Action | |||||
Consolidation | Debrief: How did you take risks today? | ||||
Reflection | Review the Helpful and Unhelpful thoughts poster created yesterday. | Debrief: Collaboration | Debrief: Collaboration sentence starters | Risk Taking poster: continuum from bad risk taking to good |
Overview - Week 2
Self Awareness & Self Identity
Day 1
Self Awareness & Self Identity
B1 Number Sense
Social Emotional Learning Focus:
Essential Key Mathematics Concepts Focus:
Curriculum Connections
Preparation & Materials:
Instructions:
Teacher Instructions
Student Mat
Student Mat
Student Mat
What is Math?
Create an anchor chart on paper or using a digital tool
Introduction
Source: talkingmathwithkids.com
Which one doesn’t belong?
Can you find reasons why each number doesn’t belong?
A
C
D
B
Minds On
Concept Circles
How can we represent the number in different ways?
48
12 × 4
96 ÷ 2
20 + 20
4 + 4
24 + 24
How can you decompose the number?
How can you represent it using manipulatives or drawings?
What expressions can you make to equal the number?
How else can you represent the number?
Source: Teaching Math with Meaning by Cathy Marks Krpan
Action
Concept Circles
Your turn: choose a number between 1000 and 100 000. Choose a concept circle template. Write your number in the centre and represent it differently in each section.
Ideas…
+ − × ÷
Source: Teaching Math with Meaning by Cathy Marks Krpan
Action
Gallery Walk
Display your completed concept circle
As you walk around to observe everyone’s work…
Remember:
Consolidation
Gallery Walk Discussion
Return to your seat
Raise your hand to share…
Consolidation
What is math?
Where is the math in your concept circles?
Let’s look at our “What is math?” anchor chart again…
Do we need to add anything?
What type of math do you connect with the most? Put a dot next to it on the anchor chart.
Reflection
Identifying & Managing Emotions
(Recognizing Sources of Stress and Coping with Challenges)
Day 2
Identifying & Managing Emotions
Social Emotional Learning Focus:
C1 Patterns and Relationships
Essential Key Mathematics Concepts Focus:
Curriculum Connections
Preparation & Materials:
Instructions:
Teacher Instructions
Create an anchor chart on paper or using a digital tool
Independent Work
What does independent work mean?
What does it look like? Sound like? Feel like?
Independent Work | ||
Looks like… | Sounds like… | ❤ Feels like… |
| | |
Introduction
Source: talkingmathwithkids.com
Which one doesn’t belong?
Can you find reasons why each set doesn’t belong?
A
C
D
B
Minds On
Rod Trains
You have rods of unit �lengths from 1 to 10.
How many different rod trains can be made from any length of rod?
For example, you can �make these 4 trains �for the 3-rod.
Source: youcubed.org
Action
Rod Trains
What strategies did you use?
How did you know when you had found all possible trains for a unit rod?
What would have been helpful as you were working?
What strategies did not work?
How did you record your work?
How did you feel as you were working on this task?
Source: youcubed.org
Consolidation
Feelings Chart
We all experience a variety of feelings throughout the day.
Where would you put the following feelings?
Add your own feelings to the list.
Low Mood | Regulated / Calm Mood | Heightened Mood |
| | |
tired
cheerful
frustrated
angry
thoughtful
optimistic
bored
lonely
proud
discouraged
Create an anchor chart on paper or using a digital tool
Reflection
Identifying & Managing Emotions
(Recognizing Sources of Stress and Coping with Challenges)
Day 3
Identifying & Managing Emotions
Social Emotional Learning Focus:
C1 Patterns and Relationships
Essential Key Mathematics Concepts Focus:
Curriculum Connections
Preparation & Materials:
Instructions:
Teacher Instructions
Dice Train
Source: NRICH
RULES
Obeying all the rules, how many solutions are possible?
You can make models with 4 dice or you could make it longer. Each train must have the funnel on top of the front dice.
Funnel
Carriage
Student Page
Play the video Believe in Yourself
Believing in ourselves is very important for our brain to grow.
Think of a time when you believed in yourself. What was the activity?
Was there a time when you surprised yourself with what you could do?
Introduction
How many dots?
How do you see them grouped?
How did you find the total number of dots?
Source: ntimages.weebly.com
Minds On
How many dots?
How do you see them grouped?
How did you find the total number of dots?
Source: ntimages.weebly.com
Minds On
How many dots?
How do you see them grouped?
How did you find the total number of dots?
Source: ntimages.weebly.com
Minds On
Dice Train
This dice model represents an old �blue steam train with a white funnel�on the engine at the front.
The dice that make up the train �are joined using three rules:
Source: NRICH
Funnel
Carriage
Action
Dice Train
This dice model represents an old �blue steam train with a white funnel�on the engine at the front.
The dice that make up the train �are joined using three rules:
RULE 3: Always use four or more dice - so you have at least two 'carriage numbers' to add up.
Source: NRICH
Funnel
Carriage
Action
Dice Train
This dice model represents an old �blue steam train with a white funnel�on the engine at the front.
The dice that make up the train �are joined using three rules:
Source: NRICH
Funnel
Carriage
Action
Dice Train
Obeying all the rules, how many solutions are possible?
You can make models with 4 dice or you could make it longer. Each train must have the funnel on top of the front dice.
Source: NRICH
Funnel
Carriage
Action
Dice Train
How many trains were you able to make with 4 dice?
What strategies did you use to build the trains?
How did you keep track of your work?
Could you make a different number of trains when you used 5 or more dice?
Consolidation
Feelings Chart
We all experience a variety of feelings throughout the day.
Are there more feelings we should add to the chart?
Let’s think about situations that you might experience at school.
Reflection
Maintaining Positive Motivation & Perseverance
Day 4
Maintaining Positive Motivation & Perseverance
B1 Number Sense
B2 Operations
Social Emotional Learning Focus:
Essential Key Mathematics Concepts Focus:
Curriculum Connections
Preparation & Materials:
Instructions:
Teacher Instructions
The Marching Band Problem
A marching band wants to line up for their performance.
They tried and tried to figure out how many lines will make everything even.
How many students are there?
Record Your Thinking Here;
Student Page
Source: School Mental Health Ontario
Introduction
Helpful and Unhelpful Thoughts
When you are working on a challenging task, what thoughts help you to continue to persevere?
What thoughts are unhelpful and lead to giving up?
Unhelpful Thoughts | Helpful Thoughts |
| |
Create an anchor chart on paper or using a digital tool
Introduction
Number Talk
1 × 16
Source: Number Talks by Sherry Parrish
2 × 8
4 × 4
8 × 2
16 × 1
How did you determine the products?
What do you notice about the numbers?
Minds On
Number Talk
1 × 24
Source: Number Talks by Sherry Parrish
2 × 12
4 × 6
8 × 3
How did you determine the products?
What do you notice about the numbers?
Minds On
The Marching Band Problem
A marching band wants to line up for their performance.
They tried and tried to figure out how many lines will make everything even.
How many students are there?
Action
The Marching Band Problem
How many students are there?
How did you solve this problem?
What tips would you give someone who had to figure out the number of students in the band?
How did you organize your work?
What does this problem tell you about the number 119?
Consolidation
Replacing Unhelpful Thoughts
Did you notice any unhelpful thoughts as you were working?
When you notice unhelpful thoughts, try replacing it with a helpful thought from our poster.
Reflection
Maintaining Positive Motivation & Perseverance
Day 5
Maintaining Positive Motivation & Perseverance
C1 Patterns and Relationships
Social Emotional Learning Focus:
Essential Key Mathematics Concepts Focus:
Curriculum Connections
Preparation & Materials:
Instructions:
Teacher Instructions
Play the introductory video for The Learning Pit
What was one thing that you want to remember about
“The Learning PIt”
Turn to a partner and share your thoughts.
Be ready to share one thing with the class.
Introduction
Learning Pit: Let’s Make Squares
While you are working today, pause every minute or so to notice your progress on the task and how you are feeling.
Minds On
Ace - 2 - 3 Challenge
Watch this video to see your goal today.
Action
Ace - 2 - 3 Challenge
How do you need to organize your cards?
Every other card goes to the bottom of the deck.
Action
Learning Pit: Ace-2-3 Challenge
How did you feel at the beginning of the task? Let’s add those feelings to our learning pit poster.
Consolidation
Learning Pit: Ace-2-3 Challenge
How did it feel at the bottom of the pit?
Consolidation
Learning Pit: Ace-2-3 Challenge
How did it feel as you were climbing out of the pit?
Consolidation
Learning Pit: Ace-2-3 Challenge
What did you learn as you worked through the problem? How did it feel at the end?
Consolidation
Helpful Thoughts
Read over the list of Helpful Thoughts that we made yesterday.
Did you think or say any of them as you were working today?
Which one(s) might be helpful to you the next time you are doing a challenging task?
Reflection
Building Relationships & Communication
Day 6
Building Relationships & Communication
B2 Operations
C1 Patterns and Relationships
Social Emotional Learning Focus:
Essential Key Mathematics Concepts Focus:
Curriculum Connections
Preparation & Materials:
Instructions:
Teacher Instructions
Create an anchor chart on paper or using a digital tool
Collaboration
What does collaboration mean?
What does it look like? Sound like? Feel like?
Collaboration | ||
Looks like… | Sounds like… | ❤ Feels like… |
| | |
Introduction
Number Talk
Source: Number Talks by Sherry Parrish
2 × 3 × 8
4 × 2 × 6
6 × 8
How did you determine the products?
What do you notice about the numbers?
Minds On
Number Talk
Source: Number Talks by Sherry Parrish
4 × 3 × 4
2 × 2 × 12
8 × 3 × 2
How did you determine the products?
What do you notice about the numbers?
2 × 2 × 3 × 4
12 × 4
Minds On
Nickels, Dimes, and Quarters
Source: Building Thinking Classrooms in Mathematics by Peter Liljedahl
How many nickels do you need to make a dollar?
How many dimes do you need to make a dollar?
How many different ways are there to make a dollar using only nickels, dimes, and quarters?
How many quarters do you need to make a dollar?
Action
Nickels, Dimes, and Quarters
How many different ways did you find? Do you have all of them? How do you know?
What information was important to find different ways to make a dollar? How are the coins related to each other?
How did you keep track of your work?
What tips would you give someone who had to solve this problem?
Consolidation
Collaboration
How did you collaborate today? Which skills did you use?
What did you appreciate about your partner today?
Is there anything we should add to the poster?
Reflection
Building Relationships & Communication
Day 7
Building Relationships & Communication
B2 Operations
Social Emotional Learning Focus:
Essential Key Mathematics Concepts Focus:
Curriculum Connections
Preparation & Materials:
Instructions:
Teacher Instructions
Four Numbers
With your partner or group of 3, select four random numbers from 1 to 9.
Use ONLY these numbers and any operations to make the values from 1 to 30.
You do not need to use all 4 numbers in each equation, and you can use the same number more than once.
Our 4 numbers: | |||||
= 1 | = 6 | = 11 | = 16 | = 21 | = 26 |
= 2 | = 7 | = 12 | = 17 | = 22 | = 27 |
= 3 | = 8 | = 13 | = 18 | = 23 | = 28 |
= 4 | = 9 | = 14 | = 19 | = 24 | = 29 |
= 5 | = 10 | = 15 | = 20 | = 25 | = 30 |
Source: Building Thinking Classrooms in Mathematics by Peter Liljedahl
Student Page
Collaboration
Let’s look at the collaboration poster we made yesterday.
Today we’re going to add some sentence starters so we can help each other work together effectively.
When collaboration is working well, what are some things we might hear people say? What do we say to keep it looking, sounding, and feeling good?
When collaboration is starting to break down, what might we notice? What can we say to help people work together and focus on the task?
Introduction
| |
Discuss with your partner or group of 3. �Share your reasoning and pick ONE of the options.
What reason was most important to you?
Would you rather have Option A or Option B?
Option A
A pitcher of 2 liters of orange juice
Option B
4 juice boxes with 250 mL of orange juice in each
Minds On
Four Numbers
With your partner or group of 3, select four random numbers from 1 to 9. Use whiteboards or scrap paper to work your thinking. Collaborate the answer on one piece of paper.
You might come up with multiple answers. You will need to communicate and compromise on what equations you will put on your sheet.
Use ONLY these numbers and any operations to make the values from 1 to 30.
You do not need to use all 4 numbers in each equation, and you can use the same number more than once.
Our 4 numbers: | |||||
= 1 | = 6 | = 11 | = 16 | = 21 | = 26 |
= 2 | = 7 | = 12 | = 17 | = 22 | = 27 |
= 3 | = 8 | = 13 | = 18 | = 23 | = 28 |
= 4 | = 9 | = 14 | = 19 | = 24 | = 29 |
= 5 | = 10 | = 15 | = 20 | = 25 | = 30 |
Source: Building Thinking Classrooms in Mathematics by Peter Liljedahl
Action
1. How did you share your work with others?
2. How did someone else’s ideas or answers inspire your work?
3. I am a Mathematician!
Now We are going to do a 3 Finger Self Reflection.
Close your hand. As I talk, raise one more finger when you have thought about that question or idea.
Four Numbers Debrief
Class Discussion:
What values were you able to get? Were there numbers that were harder to get? Why?
Consolidation
Collaboration Sentence Starters
What sentence starters did you find helpful when collaborating with your partner(s)?
What communication was NOT helpful? Why not?
Collaboration | ||
Looks like… | Sounds like… | ❤ Feels like… |
| | |
Reflection
Think Critically & Creatively
Day 8
Think Critically & Creatively
B2 Operations
C1 Patterns and Relationships
Social Emotional Learning Focus:
Essential Key Mathematics Concepts Focus:
Curriculum Connections
Preparation & Materials:
Instructions:
Teacher Instructions
Once you have a partner label yourself A and B
Walk around the classroom as the music plays. When the music stops find a partner closest to you and wait for the question.
1. Partner A goes first. Partner B listens.
What does it mean to take risks in math class?
Risk Taking in Math Class- Mill to Music
2. Partner B goes first.
How did someone else’s ideas or answers inspire your work?
Thank your partner. Play music. When music stops find a new partner.
3. Decide with your partner who goes first.
When would it be a bad time to take a risk? Why or how would it be bad?
Thank your partner. Play music. When music stops find a new partner.
Introduction
How many total staples come in the box?
Estimate how many staples are in the box.
What information do we have?
What number is definitely too low? What number is definitely too high?
What range can we agree as a class?
Minds On
Frogs
There are 2 brown frogs and 2 green frogs sitting on lily pads, with one space between the groups.
You have to swap the green frogs with the brown frogs, BUT there are some rules:
What is the smallest number of moves it takes to swap them over?
Source: NRICH
Action
Frogs
Try it with 3, 4, or 5 frogs on each side.
What is the smallest number of moves it takes to swap them over?
Source: NRICH
Action
Frogs
What helped you work on this challenge? What tip or strategy would you give to someone starting this task?
How did you take risks today? �How were the risks helpful to your learning?
What would have happened if you hadn’t taken �any risks at all?
Did you take any risks that you think were bad risks? If so, how were they bad?
Consolidation
Create an anchor chart on paper or using a digital tool
Risk Taking in Math Class
Record examples of bad risks and good risks under the two ends of the continuum.
Are there risks that belong in the middle? Discuss.
Taking Risks | ||
Bad risks | | Good risks |
|
Source: Building Thinking Classrooms in Mathematics by Peter Liljedahl
Reflection
Day 9
Self Awareness & Self Identity
Self Awareness & Self Identity
C1 Patterns and Relationships
Social Emotional Learning Focus:
Essential Key Mathematics Concepts Focus:
Curriculum Connections
Preparation & Materials:
Instructions:
Teacher Instructions
Name is unique because… | Name is unique because… |
Name is unique because… | Name is unique because… |
Talk to each other to find something that is unique about each person.
Write it with the person’s name in the grid.
Find a tie for two people, a thread for three people, and a fit for
four people and write them beside the grid.
Do NOT include physical characteristics (hair colour, height etc.)
Student Page
Watch the video Speed is not important
Discuss with a partner the idea that math is NOT about speed.
What is important in math is to think carefully, deeply, and make connections.
Introduction
Math Connections�(the opposite of Which One Doesn’t Belong)
Sources: Presentation by Lido Valencia at OMCA, February 2025
Article: Putting the Belonging Back Into Which One Doesn’t Belong? By Delise Andrews & Karla Bandemer
Minds On
Math Connections�(the opposite of Which One Doesn’t Belong)
A
C
D
B
Source: Presentation by Lido Valencia at OMCA, February 2025
Minds On
Our Connections
In your group of 4, draw a grid and write your names in it. Talk to each other to find something that is unique about each person. Write it with the person’s name in the grid.
Find a tie for two people, a thread for three people, and a fit for four people and write them beside the grid.
Do NOT include physical characteristics (hair colour, height etc.)
Name is unique because… | Name is unique because… |
Name is unique because… | Name is unique because… |
A
C
D
B
Action
Gallery Walk
Display your connections
As you walk around to observe everyone’s work…
Remember:
Consolidation
Gallery Walk Discussion
Return to your seat
Raise your hand to share…
Consolidation
I Am a Mathematician
Review the poster “What is math?” from the first day of school.
Has your opinion about math changed over the past 2 weeks? Are there examples to add to the poster?
Take a moment to think about the ways that YOU use math: You ARE a mathematician!
Reflection