1 of 2

O is any point inside a rectangle ABCD.

Prove that OB2 + OD2 = OA2 + OC2

Sol:

PQ BC

PQ ⊥ AB

and

PQ ⊥ DC

(∠B = 90° and ∠C = 90°)

∠BPQ

=

90º

∠CQP

=

90º

and

BPQC and APQD are both rectangles.

In ΔOPB,

OB2

=

BP2

+

OP2

(1)

In ΔOQD,

OD2

=

OQ2

+

DQ2

(2)

In ΔOQC,

OC2

=

OQ2

+

CQ2

(3)

In ΔOAP,

OA2

=

AP2

+

OP2

(4)

Ex.6.5(Q.8)

A

P

B

C

D

Q

O

Construction : through Q, draw PQ BC intersecting

AB and CD at P and Q respectively.

[by Pythagoras theorem]

}

2 of 2

OB2 + OD2 = OA2 + OC2

OB2 + OD2 = OA2 + OC2

O is any point inside a rectangle ABCD.

Prove that OB2 + OD2 = OA2 + OC2

Sol:

Adding (1) and (2),

OB2

=

BP2

+

OP2

OD2

+

+

OQ2

+

DQ2

=

CQ2

+

OP2

+

OQ2

+

AP2

(As BP = CQ and DQ = AP)

=

CQ2

+

OQ2

+

OP2

+

AP2

=

OC2

+

OA2

[From (3) and (4)]

A

P

B

C

D

Q

O

OB2 = BP2 + OP2 …(1)

OD2 = OQ2 + DQ2 …(2)

OC2 = OQ2 + CQ2 …(3)

OA2 = AP2 + OP2 …(4)

OB2

OD2

+