
Oilpan: GC for Blink
No more crashes, No more leaks

Kentaro Hara (haraken@chromium.org)

Team

- Mads Ager (TL)
- Vyacheslav Egorov
- Erik Corry
- Kentaro Hara
- Ian Zerny
- Gustav Wibling
- Kouhei Ueno

What is Oilpan?

What is Oilpan?

- Blink has 350 K lines of C++ code with 5500 files

- The lifetime of the C++ objects are managed by manual
reference counting

- The reference counting has been causing a ton of problems

- Oilpan replaces the reference counting with a cool GC

http://www.chromium.org/blink

Agenda of this talk

- Motivations
- Goals of Oilpan
- Programming model
- Implementation details
- Performance results

Motivations

A disadvantage of reference counting

- In reference counting, reference cycles are not allowed
- Cycles leak memory

Problem 1: Poor programmability

- You have to be very careful not to produce cycles

class A {

 RefPtr m_b;

};

class B {

 A* m_a; // This is a back pointer to A.

 // You need to use a raw pointer in order not to

 // produce a cycle.

};

Problem 1: Poor programmability

- You need to understand relationships between a lot of Blink
objects to make sure that the reference you’re going to
introduce won’t produce a cycle somewhere

- You need to wait for review from Blink experts

- This has slowed down productivity of Blink development

Problem 2: Memory leaks & Poor security

- Relationships of Blink objects are not as easy as humans
can understand

- Regardless of our careful development:
- there are a lot of memory leaks

- 10% of our tests are leaking
- there are a lot of use-after-free crashes (security bugs)

- Almost all crash reports are due to use-after-frees

https://docs.google.com/a/google.com/presentation/d/16wwjO-KisGWF_ArYbIyZAEGBSFti5IXLwcjQz1BKKmE/edit#slide=id.p

Problem 2: Memory leaks & Poor security
class A {

 ~A() { m_b->clear(); } // If B outlives A, you need to clear

 // B::m_a when A is destructed.

 // If you forget to clear, B::m_a will

 // cause use-after-free.

 RefPtr m_b;

};

class B {

 void clear() { m_a = 0; }

 A* m_a;

};

Problem 2: Memory leaks & Poor security
class A {

 ~A() { m_b->unregisterA(this); } // If B outlives A and you

 // forget to call unregisterA(),

 // B::m_weakSet will cause

 // use-after-free.

 RefPtr m_b;

};

class B {

 void unregisterA(A* a) { m_weakSet.remove(a); }

 HashSet<A*> m_weakSet;

};

Problem 2: Memory leaks & Poor security

- To break a cycle, you need to use raw pointers
=> If you miss it, it will cause memory leaks

- You need to manually maintain the lifetime of the raw
pointers (i.e., back pointers, weak pointers)

=> If you miss it, it will cause use-after-free crashes

Problem 3: Correctness is broken

- In some cases, we’re intentionally accepting wrong behavior
in order to break cycles

p = document.createElement("p");

p.innerHTML ='<div>a</div>';

span = p.querySelector("span");

p.innerHTML = "";

alert(span.parentNode);

// The expected result is <div>,

// but the actual result is null.

https://docs.google.com/a/google.com/document/d/1uYHpq7u5Sslj54UgzXjA7pYR53XjidpBcrCa-neOGQs/edit

Problem 3: Correctness is broken

- This is because Blink doesn’t hold a reference to parent
nodes in order to break a cycle

- This is just one example of existing wrong behaviors

Problem 4: Objects are not traceable

- When memory leaks, it is important to identify the culprit
object which holds memory behind it

- Even if <image> leaks 200 MB of memory, it does not
mean that the <image> is the culprit of the leak
- Blink and V8 objects have complicated relationships

Problem 4: Objects are not traceable

- To find the culprit, you need to trace objects
- However, reference counting has no information about
object graphs

Problem 4: Objects are not traceable

- As a result:
- You cannot find the cause of memory leaks easily
- Chrome cannot provide cool developer tools which could
be provided if object graphs are available

Problem 5: Complicated language bindings

- V8 is working with a generational GC
- Blink is working with reference counting
- V8-Blink binding connects them using super hacks

Problem 5: Complicated language bindings

- It will take 10 mins to explain how V8’s major GC interacts
with Blink’s reference counting

- It will take 20 mins to explain how V8’s minor GC interacts
with Blink’s reference counting

- It will take 30 mins to explain exceptional cases

https://docs.google.com/a/google.com/document/d/1OMG0fXB3DDvBaQ2YgxWLzzKjn9nWp8y_oTdQqFkBWhw/edit#
https://docs.google.com/a/google.com/document/d/1OMG0fXB3DDvBaQ2YgxWLzzKjn9nWp8y_oTdQqFkBWhw/edit#
https://docs.google.com/a/google.com/presentation/d/1uifwVYGNYTZDoGLyCb7sXa7g49mWNMW2gaWvMN5NLk8/edit#slide=id.p
https://docs.google.com/a/google.com/presentation/d/1uifwVYGNYTZDoGLyCb7sXa7g49mWNMW2gaWvMN5NLk8/edit#slide=id.p
https://code.google.com/p/chromium/codesearch#chromium/src/third_party/WebKit/Source/bindings/v8/V8GCController.cpp&q=v8gccontroller&sq=package:chromium&type=cs&l=32

Here is Oilpan!

Goals of Oilpan

For Problem 1: Poor programmability

- In Oilpan, reference cycles are OK
- Oilpan’s GC takes care of cycles

- You no longer need to introduce a complicated architecture
just for breaking cycles

For Problem 2: Memory leaks & Poor security

- In Oilpan, reference cycles are OK
=> There will be no memory leaks

- You no longer need to use raw pointers
=> There will be no use-after-free crashes

For Problem 3: Correctness is broken

- In Oilpan, reference cycles are OK
=> You no longer need to give up correctness just for
breaking cycles

For Problem 4: Objects are not traceable

- In Oilpan, objects become traceable because Oilpan knows
a complete graph of Blink objects

=> You can easily find the culprit object of memory leaks
=> Chrome can provide cool developer tools that trace
objects between Blink and V8

For Problem 5: Complicated language bindings

- In Oilpan, you just need to consider how to connect two GCs
- This is easy: Two GCs just need to exchange out-going
pointers iteratively until they mark everything

For Problem 5: Complicated language bindings

- It’s even possible to integrate Dart
- Historically, this was the reason we started Oilpan :)

Summary of the goals

- Better programming model
- No memory leaks
- No use-after-free crashes (i.e., Better security)
- Correctness
- Object traceability
- Better language bindings

Sounds cool!

Programming model

Overview

- In the reference counting world:
- class X : public RefCounted<X> { … };
- RefPtr<X>, X*

- In the Oilpan world:
- class X : GarbageCollected<X> { ... };
- Member<X>, WeakMember<X>, Persistent<X>, X*

Programming rule 1: Object allocation

- Use GarbageCollected<X> to allocate an object on Oilpan’s
heap

class X : public GarbageCollected<X> {

 …;

};

Programming rule 2: Pointers

- To add a reference to X, use either of Member<X> or
WeakMember<X> or Persistent<X> or RefPtr<X> or X*

- “Which one should I use???”
- It depends on where the reference source exists and
where the reference destination exists

Three kinds of memory regions

- There are three kinds of memory regions in Oilpan
- Stack region: Call stack of program execution
- On-heap region: The region managed by Oilpan’s GC
- Off-heap region: The region (still) managed by tcmalloc

- Reference-counted objects
- Static region of program execution

- Our goal is to migrate reference-counted objects from
off-heap to on-heap

Which pointer you should use

- Once we complete Oilpan, * => Off-heap will be gone

Which pointer you should use

- Stack => On-heap: X*
- Stack => Off-heap: RefPtr<X> (We’re already doing)
- On-heap => On-heap: Member<X> or WeakMember<X>
- On-heap => Off-heap: RefPtr<X>
- Off-heap => Off-heap: RefPtr<X> (We’re already doing)
- Off-heap => On-heap: Persistent<X>

Which pointer you should use

- Stack => On-heap: X*
- Stack => Off-heap: RefPtr<X> (We’re already doing)
- On-heap => On-heap: Member<X> or WeakMember<X>
- On-heap => Off-heap: RefPtr<X>
- Off-heap => Off-heap: RefPtr<X> (We’re already doing)
- Off-heap => On-heap: Persistent<X>

Stack => On-heap

- You can just use raw pointers on a stack
- Oilpan’s conservative GC will automatically find on-stack
raw pointers

Node* Node::parentNode() {

 Node* parent = this;

 while (parent->parentNode)

 parent = parent->parentNode;

 return parent;

}

Stack => On-heap

- You can remove all on-stack RefPtr<X>s
- This produces a big performance win!
- This is the biggest reason why Oilpan performs better
than the current reference counting

Stack => On-heap

- You no longer need to write “RefPtr<X> protect(this);”

void Frame::callV8Function(Function v8Function) {

 RefPtr<Frame> protect(this); // You had to protect the Frame

 // because the V8 execution might

 // lose the last reference to

 // the Frame. You don’t need this

 // protection in Oilpan.

 v8Function->call();

}

Which pointer you should use

- Stack => On-heap: X*
- Stack => Off-heap: RefPtr<X> (We’re already doing)
- On-heap => On-heap: Member<X> or WeakMember<X>
- On-heap => Off-heap: RefPtr<X>
- Off-heap => Off-heap: RefPtr<X> (We’re already doing)
- Off-heap => On-heap: Persistent<X>

On-heap => On-heap

- Use Member<X> or WeakMember<X> depending on lifetime
- If it’s a strong reference, use Member<X>

class Node : public GarbageCollected<Node> {

 Member<Document> m_document;

};

class Document : public GarbageCollected<Document> {

 Member<Node> m_focusedNode;

};

On-heap => On-heap

- If it’s a weak reference, use WeakMember<X>

class Node : public GarbageCollected<Node> { … };

class LiveNodeList : public GarbageCollected<LiveNodeList> {

 WeakMember<Node> m_cachedNode; // m_cachedNode will be

 // cleared when the Node is

 // destructed.

};

Which pointer you should use

- Stack => On-heap: X*
- Stack => Off-heap: RefPtr<X> (We’re already doing)
- On-heap => On-heap: Member<X> or WeakMember<X>
- On-heap => Off-heap: RefPtr<X>
- Off-heap => Off-heap: RefPtr<X> (We’re already doing)
- Off-heap => On-heap: Persistent<X>

On-heap => Off-heap

class CSSParser : public RefCounted<CSSParser> { … };

class Node : public GarbageCollected<Node> {

 RefPtr<CSSParser> m_parser;

};

- Once we move CSSParser to Oilpan’s heap, the
RefPtr<CSSParser> will become Member<CSSParser>

Which pointer you should use

- Stack => On-heap: X*
- Stack => Off-heap: RefPtr<X> (We’re already doing)
- On-heap => On-heap: Member<X> or WeakMember<X>
- On-heap => Off-heap: RefPtr<X>
- Off-heap => Off-heap: RefPtr<X> (We’re already doing)
- Off-heap => On-heap: Persistent<X>

Off-heap => On-heap

class Node : public GarbageCollected<Node> { … };

class CSSParser : public RefCounted<CSSParser> {

 Persistent<Node> m_node;

};

Node* someFunction() {

 static Persistent<Node> cachedNode = new Node();

 return cachedNode;

}

Off-heap => On-heap

- From the perspective of GC, Persistent<X>s are treated as
root objects in the marking phase

- You must not use Persistent<X>s for On-heap => On-heap
references

- It will cause memory leaks

Summary (in the transition period)

Summary (in the future)

- Once we complete Oilpan, * => Off-heap will be gone

Programming rule 3: Destructors

- Oilpan doesn’t call destructors for GarbageCollected objects
- because destructors are bad things for various reasons

- destructors waste time in fixing dead objects
- destructors cause ordering issues (explained later)
- ...etc

- We’re planning to get rid of most of all destructors eventually

If you do need destructors...

- If you want Oilpan to call destructors, you need to use
GarbageCollectedFinalized<X> instead of
GarbageCollected<X>

class X : public GarbageCollectedFinalized<X> {

 ~X() {} // ~X() is necessary because...

 String m_string; // String needs destructor.

 RefPtr<Y> m_y; // RefPtr needs destructor.

 Vector<Z> m_vector; // Vector needs destructor.

};

However, be careful

- However, there is no guarantee about the order in which
destructors are called

- You can never expect that a DOM tree is destructed from
top to down

However, be careful

- Thus you must not touch other on-heap objects in
destructors

- That’s why we want to get rid of destructors :)

class X : public GarbageCollected<X> { … };

class Y : public GarbageCollectedFinalized<Y> {

 ~Y() { m_x->clear(); } // This will crash depending on

 // the destruction order.

 Member<X> m_x;

};

Programming rule 4: Tracing objects

- Each GarbageCollected object has to have a trace() method
which traces all on-heap members

class X : public GarbageCollected<X> {

 void trace(Visitor* v) { v->trace(m_a); }

 Member<A> m_a;

};

class Y : public X {

 void trace(Visitor* v) { v->trace(m_b); X::trace(v); }

 Member m_b;

};

Why do we have to hand-write trace()?

- Oilpan’s GC uses the trace() methods to mark all reachable
objects

- In C++, it’s hard to identify what is on-heap pointer just by
looking at raw memory layout (esp., complicated on-heap
collections)

- We will provide a clang plugin that verifies that trace()
methods are correctly written for all Members

Programming rule 5: On-heap collections

- Oilpan provides on-heap collections
- Vector<Member<X>> => HeapVector<Member<X>>
- HashSet<Member<X>> => HeapHashSet<Member<X>>
- HashMap<Member<X>> => HeapHashMap<Member<X>>

- You can treat on-heap collections as normal on-heap objects
- Persistent<HeapVector<Member<X>>>

Summary

Programming rules:
- Use GarbageCollected<X>
- Use either of Member<X> or WeakMember<X> or
Persistent<X> or RefPtr<X> or X*
- Be careful about the destruction order
- Write trace() methods
- Use on-heap collections

Sounds
complicated??

Sounds complicated?

- The programming rules might look complicated at first

- However:
- The rules are consistent
- The rules are less error-prone than the current reference
counting, and thus better in long-term

- Less memory leaks
- Less use-after-frees

Sounds complicated?

- We migrated the Node & CSS hierarchy to Oilpan’s heap
and confirmed that the rules will scale up to the entire code
base

Verification tools

- Oilpan provides a clang plugin to verify that your code
follows Oilpan’s programming rule

- Are trace() methods written correctly?
- Is Persistent<X> not used for an On-heap => On-heap
reference?
- ...etc

Verification tools

- Oilpan provides ASan for Oilpan’s heap
- ASan can detect use-after-frees
- ASan can detect destructors that rely on destruction
order

- Oilpan provides a leak detector to verify that each Oilpan
change won’t introduce new memory leaks

http://www.chromium.org/developers/testing/addresssanitizer
https://docs.google.com/a/google.com/presentation/d/16wwjO-KisGWF_ArYbIyZAEGBSFti5IXLwcjQz1BKKmE/edit#slide=id.p

Implementation details

Overview of Oilpan’s GC

- Oilpan runs a mark-and-sweep GC

- Oilpan runs a conservative GC for on-stack objects

- Oilpan runs a precise GC for on-heap objects

How the mark-and-sweep GC works

(1) The GC marks root objects
- On-stack pointers (including false-positives)
- Persistent<X>

(2) The GC calls trace() methods and marks all reachable
objects

(3) The GC sweeps unmarked objects

Why use a conservative GC on a stack?

Reason 1: Programmability
- In order to run a precise GC on a stack, we have to ask
programmers to annotate what are Oilpan pointers
- We tried this approach but concluded that the
programmability won’t scale up to the entire code base

for(Handle<Node> node=firstChild(); node; node=nextSibling())
{

 HandleScope scope;

 node->foo();

}

Why use a conservative GC on a stack?

Reason 2: Performance
- Compilers are not smart enough to optimize operations
on those annotated pointers into raw pointer operations
- If we adopt a conservative GC, we can remove all
on-stack RefPtrs

- This produces a big performance win (which will
cover regressions introduced by Oilpan’s GC)

More about the conservative GC

Question: “However, a conservative GC works conservatively.
Won’t it cause unexpected memory leaks??”

Answer: Hehe, there is a magic :)

More about the conservative GC

- Blink and JavaScript are executed in event loops
- An event loop is a unit of Blink and JavaScript execution

- e.g., setTimeout() creates one event loop
- Chrome runs Blink and JavaScript as a sequence of
multiple event loops

More about the conservative GC

- At the end of each event loop, a stack becomes empty
- At that point, Oilpan can run a precise GC

More about the conservative GC

- Oilpan tries its best to run a GC at the end of event loops

- A conservative GC comes in to a play only when Oilpan
really needs to trigger a GC during an event loop

- Thus Oilpan’s GC is not that conservative in practice
- We confirmed that the conservativeness won’t become a
problem in practice

Heap structure

Heap structure

- Each thread has its own heap and stack

- Each thread can touch other threads’ heaps

- Objects allocated by a thread X is guaranteed to be
destructed by the thread X

Threading

- A GC runs in a stop-the-world manner

- When a GC runs, all threads have to be in safe points
- Safe points = Places where it is guaranteed that the
thread doesn’t touch any memory on heaps
- This doesn’t mean that all threads have to “stop”

- OK: The thread is executing JavaScript
- OK: The thread is executing blocking I/O

Threading

- When a GC runs, all threads have to be in safe points

- This means that the GC has to wait for all threads to enter
safe points

- Thus it is important to make sure that each thread enters
safe points very frequently

Threading

- Oilpan inserts safe points at the end of event loops

- Oilpan inserts safe points to various places in V8 (loops,
function calls) using existing interruption mechanism of V8

- Thus long-running JavaScript is no problem

- Oilpan inserts safe points to long-running C++ code in Blink
(image processing, network I/O)

Memory layout

Memory layout

- Oilpan will add 0 or 1 extra word to each DOM object:
- Oilpan removes one word for reference counting
- For normal DOM objects, Oilpan adds two words
- For type-specific DOM objects (e.g., Node), Oilpan adds
one word

- These extra words won’t be a problem, since the size of
DOM objects is not a dominant factor of total memory usage

- V8 heap and Strings consume much more memory

For better security

- Oilpan supports ASan

- Oilpan defers reusing freed pages for a couple of GC cycles
- This is effective to prevent security exploits that exploit
use-after-frees

http://www.chromium.org/developers/testing/addresssanitizer

Performance results

Performance

- Results

- Some benchmarks are better, some benchmarks are worse
- Performance gain comes from the fact that we removed
all on-stack RefPtrs
- Performance loss comes from the GC overhead

http://build.chromium.org/p/client.oilpan/console

Performance

- Dromaeo (A popular micro benchmark for DOM)
- dom-attr: -5%
- dom-modify: +4%
- dom-query: +18%
- dom-traverse: +7%

http://dromaeo.com/

Memory

- Results

- We confirmed that there is no observable memory increase
in page cyclers and top 25 web sites

- We confirmed that the conservativeness won’t become a
problem in practice

https://docs.google.com/a/google.com/spreadsheet/ccc?key=0AlobCOyvTnPKdDZtemdSWFRhX2gzbG50R1MxcVZYeEE&usp=drive_web#gid=0
http://www.chromium.org/developers/testing/page-cyclers

Notes

- We’ve been developing Oilpan based on an 8 month old
branch

- The results compare the branching point vs. the current
point

- We will re-evaluate performance & memory more in detail
when upstreaming Oilpan to the trunk incrementally

Conclusions

Summary

- Oilpan solves a bunch of problems of the current reference
counting in Blink

- Better programming model
- No memory leaks
- No use-after-free crashes (i.e., Better security)
- Correctness
- Object traceability
- Better language bindings

Summary

- The programming rules might look complicated at first, but
the rules are consistent and less error-prone

- Performance and memory results look good

Shipping plan

- In January, we will start shipping Oilpan for simple DOM
objects

- Objects in modules/ (IndexedDB, WebSockets etc)
- Objects in core/ that have simple, self-contained
hierarchies

- We will start shipping Oilpan for the Node & CSS objects
behind a compile time flag

We’re hiring!

- The transition period where reference counting and GC
coexist will be a bit confusing and buggy

- We want to make the transition period as short as possible

- Your help is appreciated!

Links

- Design document by ager@

- oilpan-team@google.com

https://docs.google.com/a/google.com/document/d/1y7_0ni0E_kxvrah-QtnreMlzCDKN3QP4BN1Aw7eSLfY/edit
mailto:oilpan-team@google.com

