Jaewon Chu, Seunghun Lee and Hyunwoo J. Kim
PRESTO: Preimage-Informed Instruction Optimization
for Prompting Black-Box LLMs
Machine Learning and Vision Lab
Korea University, KAIST
1
2
2
1
2
1
Korea University & KAIST
MLV Lab
NeurIPS 2025
Instruction Optimization
Black-Box LLM
?
GT Answer
Input: NeurIPS 2025
Instruction:�?
MLV Lab
MLV Lab
NeurIPS 2025
Korea University & KAIST
Instruction Optimization
Input: NeurIPS 2024
Output: Vancouver
The instruction was to?
Soft Prompt
Instruction:�?
White-Box LLM
Black-Box LLM
?
GT Answer
Input: NeurIPS 2025
Instruction:�?
MLV Lab
MLV Lab
NeurIPS 2025
Korea University & KAIST
Instruction Optimization
Black-box optimization
Input: NeurIPS 2024
Output: Vancouver
The instruction was to?
Soft Prompt
Instruction:�Output the host city of the given conference.
White-Box LLM
Black-Box LLM
San Diego �&�Mexico City
GT Answer
Score
Input: NeurIPS 2025
Instruction:�Output the host city of the given conference.
:Observed data
:Next query
Soft prompt space
MLV Lab
MLV Lab
NeurIPS 2025
Korea University & KAIST
Instruction Optimization
Black-box optimization
Input: NeurIPS 2024
Output: Vancouver
The instruction was to?
Soft Prompt
Instruction:�Output the host city of the given conference.
White-Box LLM
Black-Box LLM
San Diego �&�Mexico City
GT Answer
Score
Input: NeurIPS 2025
Instruction:�Output the host city of the given conference.
:Observed data
:Next query
Soft prompt space
Step : Train the score predictor via MSE Loss
Step : Select the next query (soft prompt) with trained score predictor
MLV Lab
MLV Lab
NeurIPS 2025
Korea University & KAIST
Motivation
Many-to-one mapping
between soft prompts and instructions
Soft prompts
Instructions
White-Box LLM
: Preimage of
: Preimage of
: Preimage of
MLV Lab
MLV Lab
NeurIPS 2025
Korea University & KAIST
Motivation
Preimage statistics
Count
# soft prompts
# instructions
66%
51%
31%
Preimage index
Preimage size
MLV Lab
MLV Lab
NeurIPS 2025
Korea University & KAIST
Motivation
Previous works: Many-to-one mapping hinders the efficient optimization
PRESTO (Ours): Many-to-one mapping accelerates the efficient optimization
MLV Lab
MLV Lab
NeurIPS 2025
Korea University & KAIST
Method – Score Sharing [A]
MLV Lab
MLV Lab
NeurIPS 2025
Korea University & KAIST
Method – Score Sharing [A]
Scored data
(Previous works)
{ , 0.4}
{ , 0.3}
{ , 0.4}
{ , 0.4}
{ , 0.4}
Scored data
(Ours)
Score Sharing
{ , 0.3}
{ , 0.3}
MLV Lab
MLV Lab
NeurIPS 2025
Korea University & KAIST
Method – Preimage-based Initialization [B]
Goal: Select preimages for initialization that maximally cover the search space
Search space
: Soft prompt of preimage 1
: Soft prompt of preimage 2
: Soft prompt of preimage 3
MLV Lab
MLV Lab
NeurIPS 2025
Korea University & KAIST
Method – Preimage-based Initialization [B]
Goal: Select preimages for initialization that maximally cover the search space
Search space
: Soft prompt of preimage 1
: Soft prompt of preimage 2
: Soft prompt of preimage 3
Search space
Search space
Search space
Max coverage
Low coverage
Low coverage
MLV Lab
MLV Lab
NeurIPS 2025
Korea University & KAIST
Method – Score Consistency Regularization [C]
MLV Lab
MLV Lab
NeurIPS 2025
Korea University & KAIST
Experiment: Main Table
MLV Lab
MLV Lab
NeurIPS 2025
Korea University & KAIST
X 14
Analysis – Score Sharing [A]
Number of scored data
Budget
MLV Lab
MLV Lab
NeurIPS 2025
Korea University & KAIST
Analysis – Preimage-based Initialization [B]
Visualization of the initial data distribution
Random init. (Previous)
Preimage-based init. (Ours)
MLV Lab
MLV Lab
NeurIPS 2025
Korea University & KAIST
Analysis – Score Consistency Regularization [C]
Score predictor performance
MLV Lab
MLV Lab
NeurIPS 2025
Korea University & KAIST
PRESTO: Preimage-Informed Instruction Optimization
for Prompting Black-Box LLMs
Paper
18
Korea University & KAIST
MLV Lab
NeurIPS 2025