1 of 37

What is TensorFlow?

  • TensorFlow is a deep learning library recently open-sourced by Google.
  • But what does it actually do?
    • TensorFlow provides primitives for defining functions on tensors and automatically computing their derivatives.

2 of 37

But what’s a Tensor?

  • Formally, tensors are multilinear maps from vector spaces to the real numbers ( vector space, and dual space)

)

)

)

  • A scalar is a tensor (
  • A vector is a tensor (
  • A matrix is a tensor (
  • Common to have fixed basis, so a tensor can be represented as a multidimensional array of numbers.

3 of 37

TensorFlow vs. Numpy

  • Few people make this comparison, but TensorFlow and Numpy are quite similar. (Both are N-d array libraries!)
  • Numpy has Ndarray support, but doesn’t offer methods to create tensor functions and automatically compute derivatives (+ no GPU support).

VS

4 of 37

Simple Numpy Recap

In [23]: import numpy as np

In [24]: a = np.zeros((2,2)); b = np.ones((2,2)) In [25]: np.sum(b, axis=1)

Out[25]: array([ 2., 2.])

In [26]: a.shape

Out[26]: (2, 2)

In [27]: np.reshape(a, (1,4))

Out[27]: array([[ 0., 0., 0., 0.]])

5 of 37

Repeat in TensorFlow

In [31]: import tensorflow as tf

In [32]: tf.InteractiveSession()

In [33]: a = tf.zeros((2,2)); b = tf.ones((2,2))

In [34]: tf.reduce_sum(b, reduction_indices=1).eval() Out[34]: array([ 2., 2.], dtype=float32)

In [35]: a.get_shape()

Out[35]: TensorShape([Dimension(2), Dimension(2)])

In [36]: tf.reshape(a, (1, 4)).eval()

Out[36]: array([[ 0., 0., 0., 0.]], dtype=float32)

TensorShape behaves like a python tuple.

More on .eval()

in a few slides

More on SessionοΏ½soon

6 of 37

Numpy to TensorFlow Dictionary

Numpy

TensorFlow

a = np.zeros((2,2)); b = np.ones((2,2))

a = tf.zeros((2,2)), b = tf.ones((2,2))

np.sum(b, axis=1)

tf.reduce_sum(a,reduction_indices=[1])

a.shape

a.get_shape()

np.reshape(a, (1,4))

tf.reshape(a, (1,4))

b * 5 + 1

b * 5 + 1

np.dot(a,b)

tf.matmul(a, b)

a[0,0], a[:,0], a[0,:]

a[0,0], a[:,0], a[0,:]

7 of 37

TensorFlow requires explicit evaluation!

In [37]: a = np.zeros((2,2))

In [38]: ta = tf.zeros((2,2))

In [39]: print(a)

[[ 0. 0.]

[ 0. 0.]]

In [40]: print(ta)

Tensor("zeros_1:0", shape=(2, 2), dtype=float32)

In [41]: print(ta.eval())

[[

0.

0.]

[

0.

0.]]

TensorFlow computations define a computation graph that has no numerical value until evaluated!

8 of 37

TensorFlow Session Object (1)

  • β€œA Session object encapsulates the environment in which Tensor objects are evaluated” - TensorFlow Docs

In [20]: a = tf.constant(5.0)

In [21]: b = tf.constant(6.0)

In [22]: c = a * b

In [23]: with tf.Session() as sess:

print(sess.run(c)) print(c.eval())

....:

....:

....: 30.0

30.0

c.eval() is just syntactic sugar for sess.run(c) in the currently active session!

9 of 37

TensorFlow Session Object (2)

  • tf.InteractiveSession() is just convenient syntactic sugar for keeping a default session open in ipython.
  • sess.run(c) is an example of a TensorFlow Fetch. Will say more on this soon.

10 of 37

Tensorflow Computation Graph

  • β€œTensorFlow programs are usually structured into a construction phase, that assembles a graph, and an execution phase that uses a session to execute ops in the graph.” - TensorFlow docs
  • All computations add nodes to global default graph (docs)

11 of 37

TensorFlow Variables (1)

  • β€œWhen you train a model you use variables to hold and update parameters. Variables are in-memory buffers containing tensors” - TensorFlow Docs.
  • All tensors we’ve used previously have been constant

tensors, not variables.

12 of 37

TensorFlow Variables (2)

[[

1.

1.]

[

1.

1.]]

[[

0.

0.]

[

0.

0.]]

In [32]: W1 = tf.ones((2,2))

In [33]: W2 = tf.Variable(tf.zeros((2,2)), name="weights") In [34]: with tf.Session() as sess:

print(sess.run(W1)) sess.run(tf.initialize_all_variables()) print(sess.run(W2))

....:

Note the initialization step tf. initialize_all_variables()

13 of 37

TensorFlow Variables (3)

  • TensorFlow variables must be initialized before they have

values! Contrast with constant tensors.

In [38]: W = tf.Variable(tf.zeros((2,2)), name="weights")

In [39]: R = tf.Variable(tf.random_normal((2,2)), name="random_weights")

In [40]: with tf.Session() as sess:

sess.run(tf.initialize_all_variables()) print(sess.run(W))

print(sess.run(R))

....:

....:

....:

....:

Variable objects can be initialized from constants or random values

Initializes all variables with specified values.

14 of 37

Updating Variable State

In [63]: state = tf.Variable(0, name="counter")

In [64]: new_value = tf.add(state, tf.constant(1))

In [65]: update = tf.assign(state, new_value)

In [66]: with tf.Session() as sess:

sess.run(tf.initialize_all_variables()) print(sess.run(state))

for _ in range(3): sess.run(update) print(sess.run(state))

....:

....:

....:

....:

....:

....:

0

1

2

3

Roughly state = new_value

Roughly new_value = state + 1

Roughly

state = 0

print(state)

for _ in range(3): state = state + 1 print(state)

15 of 37

Fetching Variable State (1)

Calling sess.run(var) on a tf.Session() object retrieves its value. Can retrieve multiple variables simultaneously with sess.run([var1, var2]) (See Fetches in TF docs)

In [82]: input1 = tf.constant(3.0) In [83]: input2 = tf.constant(2.0) In [84]: input3 = tf.constant(5.0)

In [85]: intermed = tf.add(input2, input3) In [86]: mul = tf.mul(input1, intermed)

In [87]: with tf.Session() as sess:

result = sess.run([mul, intermed]) print(result)

....:

....:

....:

[21.0, 7.0]

16 of 37

Fetching Variable State (2)

17 of 37

Inputting Data

  • All previous examples have manually defined tensors. How can we input external data into TensorFlow?
  • Simple solution: Import from Numpy:

In [93]: a = np.zeros((3,3))

In [94]: ta = tf.convert_to_tensor(a) In [95]: with tf.Session() as sess:

....: print(sess.run(ta))

....:

[[ 0. 0. 0.]

[ 0. 0. 0.]

[ 0. 0. 0.]]

18 of 37

Placeholders and Feed Dictionaries (1)

  • Inputting data with tf.convert_to_tensor() is convenient, but doesn’t scale.
  • Use tf.placeholder variables (dummy nodes that provide entry points for data to computational graph).
  • A feed_dict is a python dictionary mapping from tf. placeholder vars (or their names) to data (numpy arrays, lists, etc.).

19 of 37

Placeholders and Feed Dictionaries (2)

In [96]: input1 = tf.placeholder(tf.float32)

In [97]: input2 = tf.placeholder(tf.float32)

In [98]: output = tf.mul(input1, input2)

In [99]: with tf.Session() as sess:

....: print(sess.run([output], feed_dict={input1:[7.], input2:[2.]}))

....:

[array([ 14.], dtype=float32)]

Fetch value of output from computation graph.

Feed data into computation graph.

Define tf.placeholder

objects for data entry.

20 of 37

Placeholders and Feed Dictionaries (3)

21 of 37

Variable Scope (1)

  • Complicated TensorFlow models can have hundreds of variables.
    • tf.variable_scope() provides simple name-spacing to avoid clashes.
    • tf.get_variable() creates/accesses variables from within a variable scope.

22 of 37

Variable Scope (2)

  • Variable scope is a simple type of namespacing that adds prefixes to variable names within scope

with tf.variable_scope("foo"): with tf.variable_scope("bar"):

v = tf.get_variable("v", [1]) assert v.name == "foo/bar/v:0"

23 of 37

Variable Scope (3)

  • Variable scopes control variable (re)use

with tf.variable_scope("foo"):

v = tf.get_variable("v", [1]) tf.get_variable_scope().reuse_variables() v1 = tf.get_variable("v", [1])

assert v1 == v

  • You’ll need to use reuse_variables() to implement RNNs in homework

24 of 37

Understanding get_variable (1)

  • Behavior depends on whether variable reuse enabled
  • Case 1: reuse set to false
    • Create and return new variable

with tf.variable_scope("foo"):

v = tf.get_variable("v", [1]) assert v.name == "foo/v:0"

25 of 37

Understanding get_variable (2)

  • Case 2: Variable reuse set to true
    • Search for existing variable with given name. Raise

ValueError if none found.

with tf.variable_scope("foo"):

v = tf.get_variable("v", [1])

with tf.variable_scope("foo", reuse=True): v1 = tf.get_variable("v", [1])

assert v1 == v

26 of 37

Ex: Linear Regression in TensorFlow (1)

import numpy as np import seaborn

# Define input data

X_data = np.arange(100, step=.1)

y_data = X_data + 20 * np.sin(X_data/10)

# Plot input data plt.scatter(X_data, y_data)

27 of 37

Ex: Linear Regression in TensorFlow (2)

# Define data size and batch size n_samples = 1000

batch_size = 100

# Tensorflow is finicky about shapes, so resize X_data = np.reshape(X_data, (n_samples,1)) y_data = np.reshape(y_data, (n_samples,1))

# Define placeholders for input

X = tf.placeholder(tf.float32, shape=(batch_size, 1)) y = tf.placeholder(tf.float32, shape=(batch_size, 1))

28 of 37

Ex: Linear Regression in TensorFlow (3)

# Define variables to be learned

with tf.variable_scope("linear-regression"): W = tf.get_variable("weights", (1, 1),

initializer=tf.random_normal_initializer()) b = tf.get_variable("bias", (1,),

initializer=tf.constant_initializer(0.0)) y_pred = tf.matmul(X, W) + b

loss = tf.reduce_sum((y - y_pred)**2/n_samples)

Note reuse=False so these tensors are created anew

29 of 37

Ex: Linear Regression in TensorFlow (4)

# Sample code to run one step of gradient descent In [136]: opt = tf.train.AdamOptimizer()

In [137]: opt_operation = opt.minimize(loss)

In [138]: with tf.Session() as sess:

sess.run(tf.initialize_all_variables()) sess.run([opt_operation], feed_dict={X: X_data, y: y_data})

.....:

.....:

.....:

But how does this actually work under the hood? Will return to TensorFlow computation graphs and explain.

Note TensorFlow scope is not python scope! Python variable loss is still visible.

30 of 37

Ex: Linear Regression in TensorFlow (4)

# Sample code to run full gradient descent: # Define optimizer operation

opt_operation = tf.train.AdamOptimizer().minimize(loss)

with tf.Session() as sess:

# Initialize Variables in graph sess.run(tf.initialize_all_variables()) # Gradient descent loop for 500 steps for _ in range(500):

# Select random minibatch

indices = np.random.choice(n_samples, batch_size) X_batch, y_batch = X_data[indices], y_data[indices] # Do gradient descent step

_, loss_val = sess.run([opt_operation, loss], feed_dict={X: X_batch, y: y_batch})

Let’s do a deeper. graphical dive into this operation

31 of 37

Ex: Linear Regression in TensorFlow (5)

32 of 37

Ex: Linear Regression in TensorFlow (6)

Learned model offers nice fit to data.

33 of 37

Concept: Auto-Differentiation

  • Linear regression example computed L2 loss for a linear regression system. How can we fit model to data?
    • tf.train.Optimizer creates an optimizer.
    • tf.train.Optimizer.minimize(loss, var_list)

adds optimization operation to computation graph.

  • Automatic differentiation computes gradients without user input!

34 of 37

TensorFlow Gradient Computation

  • TensorFlow nodes in computation graph have attached gradient operations.
  • Use backpropagation (using node-specific gradient ops) to compute required gradients for all variables in graph.

35 of 37

TensorFlow Gotchas/Debugging (1)

  • Convert tensors to numpy array and print.
  • TensorFlow is fastidious about types and shapes. Check that types/shapes of all tensors match.
  • TensorFlow API is less mature than Numpy API. Many advanced Numpy operations (e.g. complicated array slicing) not supported yet!

36 of 37

TensorFlow Gotchas/Debugging (2)

  • If you’re stuck, try making a pure Numpy implementation of forward computation.
  • Then look for analog of each Numpy function in TensorFlow API
  • Use tf.InteractiveSession() to experiment in shell. Trial and error works!

37 of 37

TensorBoard

  • TensorFlow has some neat built-in visualization tools (TensorBoard).
  • We won’t use TensorBoard for homework (tricky to set up when TensorFlow is running remotely), but we encourage you to check it out for your projects.