Summary and Discussion �Lab 6: �MLE fitting of a dynamic model
Reshma Kassanjee and Seth Blumberg
University of Cape Town �SACEMA
MMED 2024
Some slides by Juliet Pulliam
��
000
Goals
000
Boxcar model
β × exp(-α×I/N)
000
Lines 1-99
000
5
The ‘true’ prevalence over time
000
6
Simulate prevalence data
000
7
No longer know the true prevalence
🡪 Fit the model to data by estimating unknown parameters by � maximizing the likelihood function (using optimization algorithms)
000
Lines 100-199
000
Boxcar model
β × exp(-α×I/N)
000
β × exp(-α×I/N)
The model world = real world
000
The ‘fitted’ prevalence over time
11
000
Parameter transformations
Why?
000
Parameter transformations
000
Parameter transformations
000
Optimization algorithms
000
Simulated annealing
000
Nelder-Mead optimization
https://codesachin.wordpress.com/2016/01/16/nelder-mead-optimization/
000
Lines 200-318
000
Parameter estimates
19
000
Parameter estimates
20
000
Parameter estimates
21
Uncertainties??
000
Normal distribution
22
000
Likelihood ratio
23
000
Hessian matrix
000
20 vs 80 samples per surveillance study
000
Changing the frequency of surveillance
000
Take-away points
000
This presentation is made available through a Creative Commons Attribution-Noncommercial license. Details of the license and permitted uses are available at� http://creativecommons.org/licenses/by-nc/3.0/
Title: Lab 6 Summary: MLE fitting of a dynamic model to prevalence data
Attribution: Juliet R.C. Pulliam & Reshma Kassanjee & Steve E. Bellan & Seth Blumberg, Clinic on the Meaningful Modeling of Epidemiological Data
Source URL: http://www.ici3d.org/MMED/tutorials/Lab6_summary.pdf
For further information please contact admin@ici3d.org.
000
000
© 2024 International Clinics on Infectious Disease Dynamics and Data
000
000