Project ALVI:�Privacy-Driven Defenses: Federated Learning Security & Authentication
R24-053
Team members
Mr. Kanishka yapa
supervisor
Mr. Samadhi Rathnayake
dr. Kasun Karunarathne
Co-supervisor
External supervisor
Peiris B.L.H.D
J.P.A.S. Pathmendre
Athauda A.M.I.R.B
A.R.W.M.V. Hasaranga
R24-053
01
introduction
R24-053
R24-053
02
background
R24-053
background
R24-053
Our
objectives
main objectives
sub objectives
R24-053
R24-053
System overview
01
02
03
04
CodeNexa
A Novel Security Framework for Federated Learning to Mitigate Man-in-the-Middle Attacks
hydraguard
Backdoor immunity
SECUNID
Enhancing Global Model Security
S.H.I.E.L.D.
Security in VFL
R24-053
System diagram
COMPONENT 1�
CODE NEXA: A NOVEL SECURITY FRAMEWORK FOR FEDERATED LEARNING TO MITIGATE MAN-IN-THE-MIDDLE ATTACKS
R24-053
Peiris B.L.H.D – IT21110184
2. WHAT ARE THE EXSISTING TECHNIQUES FOR THOSE
CHALLENGES?
BACKGROUND
R24-053
Peiris B.L.H.D – IT21110184
Research problem
R24-053
Peiris B.L.H.D – IT21110184
OBJECTIVE
DEVELOPING A NOVEL SECURITY FRAMEWORK FOR FEDERATED LEARNING TO MITIGATE MAN-IN-THE-MIDDLE ATTACKS
R24-053
Peiris B.L.H.D – IT21110184
SUB-OBJECTIVE
R24-053
Peiris B.L.H.D – IT21110184
Component diagram
08. PROJECT COMPLETION
R24-053
Peiris B.L.H.D – IT21110184
R24-053
Peiris B.L.H.D – IT21110184
Work done model
The graph plots showcase the performance of multiple local models (from 0 to 8) in federated learning setup
Work done model
Match the metrics are same or not , if metrics are same model is accepted if not model is rejected.
R24-053
Peiris B.L.H.D – IT21110184
FRONTEND
R24-053
Peiris B.L.H.D – IT21110184
requirments
�Functional Requirements | Non-Functional Requirements |
Model Integrity Validation | Scalability |
Encryption of Metrics | Security |
Multi-Seed Validation | Performance |
Rejection of Compromised Models | Usability |
R24-053
Peiris B.L.H.D – IT21110184
Research paper submission
ICAC Submission
SNAMS2024 Submission
R24-053
Peiris B.L.H.D – IT21110184
10. REFERENCES
R24-053
Peiris B.L.H.D – IT21110184
REFERENCES
[1] I. Goodfellow, J. Shlens, and C. Szegedy, ”Explaining and Harnessing Adversarial Examples,” in Proc. Int. Conf. Learn. Represent., 2015, pp. 1-11.
[2] N. Papernot, P. McDaniel, A. Sinha, and M. Wellman, ”SoK: Towards the Science of Security and Privacy in Machine Learning,” in Proc. IEEE European Symposium on Security and Privacy (EuroSP), 2018, pp. 399-414.
[3] Q. Yang, Y. Liu, T. Chen, and Y. Tong, ”Federated Machine Learning: Concept and Applications,” ACM Trans. Intell. Syst. Technol., vol. 10, no. 2, pp. 1-19, Jan. 2019.
[4] Y. Liu, Y. Kang, X. Song, and S. Yu, ”A Comprehensive Survey on Federated Learning: Concept, Applications, and Challenges,” ACM Computing Surveys, vol. 54, no. 5, pp. 1-36, Sep. 2021.
[5] X. Zhang, W. Hu, and P. Li, ”Towards Federated Learning Systems: A Survey on Security and Privacy,” IEEE Access, vol. 7, pp. 118096- 118108, Aug. 2019.
[6] A. Roy, S. Siddiqui, and D. Gupta, ”A Survey on Federated Learning and its Applications,” Journal of Artificial Intelligence Research, vol. 10, no. 2, pp. 45-55, Feb. 2020.
R24-053
Peiris B.L.H.D – IT21110184
THANK YOU!
R24-053
Peiris B.L.H.D – IT21110184
Component 2 : �HydraGuard: Backdoor immunity in FL Environments.
J.P.A.S.Pathmendre – IT21085376
R24-053
J.P.A.S Pathmendra– IT21085376
BACKGROUND
01
J.P.A.S.Pathmendre – IT21085376
R24-053
BACKGROUND
J.P.A.S.Pathmendre – IT21085376
R24-053
RESEARCH PROBLEM
02
J.P.A.S.Pathmendre – IT21085376
R24-053
RESEARCH PROBLEM
J.P.A.S.Pathmendre – IT21085376
R24-053
RESEARCH GAP
03
J.P.A.S.Pathmendre – IT21085376
R24-053
RESEARCH GAP
Zhang, K., Tao, G., Xu, Q., Cheng, S., An, S., Liu, Y., Feng, S., Shen, G., Chen, P.Y., Ma, S. and Zhang, X., 2022. Flip: A provable defense framework for backdoor mitigation in federated learning. arXiv preprint arXiv:2210.12873.
J.P.A.S.Pathmendre – IT21085376
RESEARCH GAP
J.P.A.S.Pathmendre – IT21085376
R24-053
OBJECTIVES
04
J.P.A.S.Pathmendre – IT21085376
R24-053
OBJECTIVE
Developing a robust preventive and detective mechanism against backdoor attacks in FL systems without Reducing accuracy lost or without computational overhead.
J.P.A.S.Pathmendre – IT21085376
R24-053
SUB OBJECTIVE
J.P.A.S.Pathmendre – IT21085376
R24-053
NOVELTY
05
J.P.A.S.Pathmendre – IT21085376
R24-053
NOVELTY
Componenet Digram
Requirments
J.P.A.S.Pathmendre – IT21085376
R24-053
Component Diagram
J.P.A.S.Pathmendre – IT21085376
R24-053
REQUIREMENTS
06
J.P.A.S.Pathmendre – IT21085376
R24-053
REQUIREMENTS
Non-Funtional
Funtional
Trigger Inversion
Reinitializing Linear Classifier
Measure Class Distance
DATA Set-MNIST
Maintain ACC and reducing ASR
Reduce Computational Overhead
Maintaining Model Accuracy
R24-053
Project Completion
07
J.P.A.S.Pathmendre – IT21085376
R24-053
90%
J.P.A.S.Pathmendre – IT21085376
R24-053
Resource Collection
J.P.A.S.Pathmendre – IT21085376
Connecting With Senior Researchers
Connecting With Industry Experts
R24-053
J.P.A.S.Pathmendre – IT21085376
Model Training Phase
Getting Results
Project Completion�Work Done Final Model
R24-053
J.P.A.S.Pathmendre – IT21085376
Loss Variation
Attack Success Rate
Model Accuracy
Variation
Project Completion�Test Results
R24-053
Project Completion�Research Findings
J.P.A.S.Pathmendre – IT21085376
Zhang, K., Tao, G., Xu, Q., Cheng, S., An, S., Liu, Y., Feng, S., Shen, G., Chen, P.Y., Ma, S. and Zhang, X., 2022. Flip: A provable defense framework for backdoor mitigation in federated learning. arXiv preprint arXiv:2210.12873.
R24-053
J.P.A.S.Pathmendre – IT21085376
Project Completion�Work Done-Frontend
R24-053
J.P.A.S.Pathmendre – IT21085376
Research Paper�
Conference Submissions
R24-053
REFERENCES
08
J.P.A.S.Pathmendre – IT21085376
R24-053
REFERENCES
J.P.A.S.Pathmendre – IT21085376
R24-053
Athauda A.M.I.R.B - IT21049354�Cyber Security
Component 3�
Athauda A.M.I.R.B – IT21049354
SECUNID:
Enhancing Global Model Security
R24-053
Introduction
01
Athauda A.M.I.R.B – IT21049354
R24-053
Athauda A.M.I.R.B – IT21049354
R24-053
Research Problem?
02
Athauda A.M.I.R.B – IT21049354
R24-053
2.Examing local datasets(compromise the privacy of participants)
3.Assuming IID data
Athauda A.M.I.R.B – IT21049354
R24-053
What are the limitations in traditional methods?
Research Gap
03
Athauda A.M.I.R.B – IT21049354
R24-053
Athauda A.M.I.R.B – IT21049354
R24-053
| RESEARCH A | RESEARCH B | RESEARCH C | PROPOSED SOLUTION |
Robust outlier detection for security | | | | |
Efficient handling of Non-IID data | | | | |
Integrated approach for FL security & Non-IID data | | | | |
Scalability to large FL network | | | | |
Real world applicability across diverse domains | | | | |
Adherence to Data Privacy Regulations | | | | |
User-friendly system deployment | | | | |
No special insfracture requirements | | | | |
Objectives
04
Athauda A.M.I.R.B – IT21049354
R24-053
Main Objectives
Sub Objectives
Athauda A.M.I.R.B – IT21049354
R24-053
Methodology
05
Athauda A.M.I.R.B – IT21049354
R24-053
SECUNID
Athauda A.M.I.R.B – IT21049354
R24-053
Project Completion
06
Athauda A.M.I.R.B – IT21049354
R24-053
Athauda A.M.I.R.B – IT21049354
R24-053
Athauda A.M.I.R.B – IT21049354
R24-053
Project Completion
Training dataset to 50 epochs
Athauda A.M.I.R.B – IT21049354
R24-053
Project Completion
Project Completion
Athauda A.M.I.R.B – IT21049354
R24-053
Heatmap without malicious participants
Heatmap with malicious participants
Research Paper
07
Athauda A.M.I.R.B – IT21049354
R24-053
Research Paper
Athauda A.M.I.R.B – IT21049354
R24-053
ICAC Submission
SNAMS2024 Submission
References
08
Athauda A.M.I.R.B – IT21049354
R24-053
[1] E. Isik-Polat, G. Polat, and A. Kocyigit, “ARFED: Attack-Resistant Federated averaging based on outlier elimination,” Future Generation Computer Systems, vol. 141, pp. 626–650, Apr. 2023, doi: https://doi.org/10.1016/j.future.2022.12.003.
[2] H. Zhang, Y. Zhang, X. Que, Y. Liang, and J. Crowcroft, “Efficient federated learning under non-IID conditions with attackers,” Oct. 2022, doi: https://doi.org/10.1145/3556557.3557951.
[3] D. Panagoda, C. Malinda, C. Wijetunga, L. Rupasinghe, B. Bandara, and C. Liyanapathirana, “Application of Federated Learning in Health Care Sector for Malware Detection and Mitigation Using Software Defined Networking Approach,” IEEE Xplore, Aug. 01, 2022. https://ieeexplore.ieee.org/document/9909488 (accessed Jun. 10, 2023).
[4] C. Zhou, Y. Sun, D. Wang, and Q. Gao, “Fed-Fi: Federated Learning Malicious Model Detection Method Based on Feature Importance,” Security and Communication Networks, vol. 2022, pp. 1–11, May 2022, doi: https://doi.org/10.1155/2022/7268347.
[5] Z. Zhang, X. Cao, J. Jia, and N. Z. Gong, “FLDetector: Defending Federated Learning Against Model Poisoning Attacks via Detecting Malicious Clients,” Proceedings of the 28th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, Aug. 2022, doi: https://doi.org/10.1145/3534678.3539231.
Athauda A.M.I.R.B – IT21049354
R24-053
Athauda A.M.I.R.B – IT21049354
R24-053
Thanks!
Securing Vertical Federated Learning Against Label
Inference Attacks Using Confusional Autoencoders,
Noise Addition, and Simplified Secure Multi-Party
Computation.
A.R.W.M.V.Hasaranga�IT21051548
�
�
�
�
�
A.R.W.M.V.Hasaranga– IT21051548
R24-053
Table Of Contents
Introduction
&�Background�
Research Problems &�Research Gap
Objectives�
System Design
Novelty Of The Approach
Research progress�
Research Completion
A.R.W.M.V.Hasaranga– IT21051548
R24-053
A.R.W.M.V.Hasaranga– IT21051548
R24-053
Background
Definition of VFL:
Importance of Security in VFL:
Security Challenges:
A.R.W.M.V.Hasaranga– IT21051548
R24-053
Limited Defense Mechanisms:
Insufficient Mitigation Strategies:
Research Problem
A.R.W.M.V.Hasaranga– IT21051548
R24-053
Objectives And Sub Objectives
MAIN OBJECTIVE: �DEVELOP AND INTEGRATE ADVANCED DEFENSE MECHANISMS TO SECURE VERTICAL FEDERATED LEARNING SYSTEMS AGAINST ATTACKS.
DEVELOP A DEFENSE MECHANISM TO SECURE VFL AGAINST LABEL INFERENCE ATTACKS.
COMBINE CONFUSIONAL AUTOENCODERS, NOISE ADDITION, AND SIMPLIFIED SMC.
ENSURE MINIMAL IMPACT ON MODEL ACCURACY WHILE ENHANCING PRIVACY
A.R.W.M.V.Hasaranga– IT21051548
R24-053
Component diagram
A.R.W.M.V.Hasaranga– IT21051548
R24-053
Novelty of the Approach
Innovative Integration: �Introduction of confusional autoencoders for privacy in VFL. Noise addition to further obscure sensitive data. Simplified SMC framework for a lightweight and scalable solution.�
Targeting All Attack Forms: �This integration is designed to mitigate direct, passive, and active label inference attacks, a method not previously implemented.
Enhanced Data Protection: �Aims to significantly enhance data protection by keeping sensitive information encrypted and secure during all phases of computation.
Pioneering Security Solutions: �This unique combination has not been previously attempted, offering potential groundbreaking improvements in federated learning security.
A.R.W.M.V.Hasaranga– IT21051548
R24-053
Research Progress
Tested on MNIST dataset With Confusional auto encoder and noise addition.
Integrate 5 Fold method as a simplified version of SMPC
Minimal impact on model accuracy while increasing defense .
A.R.W.M.V.Hasaranga– IT21051548
R24-053
Research Completion
Trained autoencoder
A.R.W.M.V.Hasaranga– IT21051548
R24-053
Research Completion
A.R.W.M.V.Hasaranga– IT21051548
R24-053
Research Completion
A.R.W.M.V.Hasaranga– IT21051548
R24-053
Research Completion
Results
Five folds Results
Combined confusion matrices
A.R.W.M.V.Hasaranga– IT21051548
R24-053
Front end
A.R.W.M.V.Hasaranga– IT21051548
R24-053
Research Paper
Research Paper
Conference submission
A.R.W.M.V.Hasaranga– IT21051548
R24-053
References
A.R.W.M.V.Hasaranga– IT21051548
R24-053
Athauda A.M.I.R.B – IT21049354
R24-053
Thank You
A.R.W.M.V.Hasaranga– IT21051548
R24-053
This Photo by Unknown Author is licensed under CC BY-SA
A.R.W.M.V.Hasaranga– IT21051548
R24-053
Commercialization
TECHNOLOGIES
PYTHON
docker
ML
PyTorch
GITHUB
TensorFlow
Jupyter Notebook
WORK�BREAKDOWN�STRUCTURE
Gantt chart
Thank
YOU