

UNIVERSITY OF GDL

BIRMINGHAM

#### IMPERIAL

University of

Sheffield

Science and

Technology

# Commissioning of the MIGDAL detector with fast

# neutrons

#### **Tim Marley**

Imperial College London

On behalf of the MIGDAL Collaboration

The 15th International Workshop on the Identification of Dark Matter - 8-12 July 2024 - L'Aquila, Italy

UAM

NEW MEXICO.

IMPERIAL

#### The Migdal effect

- Direct DM experiments invoke the Migdal effect to probe energies below their nuclear recoil threshold.
- Predicted by A. Migdal in the 1930s/1940s and first observed in radioactive decays in the 1970s but not yet recorded in nuclear scattering.
- Migdal In Galactic Dark mAtter expLoration (MIGDAL) Experiment
  - We aim to achieve the unambiguous observation (and characterisation) of the Migdal effect using a low-pressure optical TPC and high-energy neutrons.



2

## The MIGDAL Experiment

- High-yield neutron generator
  - $\circ$  D-D: 2.47 MeV (10<sup>9</sup> n/s)
  - Defined, collimated beam
- Low-pressure gas: 50 Torr of CF<sub>4</sub>
  - Visible light + VUV scintillator
  - Extended particle tracks, Long attenuation length for gamma rays
  - Can add fraction of noble gases relevant to dark matter searches (Ar / Xe)
- Optical TPC
  - Amplification: 2x glass-GEMs
  - Optical: camera + photomultiplier tube
  - Charge: 120 ITO anode strips
- Electron and nuclear recoil tracks
  - Migdal: NR+ER tracks, common vertex
  - $\circ$  NR and ER tracks have opposite dE/dx profiles
  - $\circ$  5 keV electron threshold (<sup>55</sup>Fe calibration)







Double glass-GEWs Diameter: 170 µm | pitch: 280 µm | thickness: 570 µm

#### Combining optical and charge readout



12-bit resolution

#### NILE facility at Rutherford Appleton Laboratory, UK

- Bespoke DD and DT neutron irradiation facility located within Target Station 2 at ISIS Neutron and Muon Source, RAL
- Concrete bunker with interlocked access
- MIGDAL experiment sits in the centre of the bunker





IDM 2024

#### Shielded and unshielded renders of the experiment



IDM 2024

#### Characterising the neutron and NR rate

- Expected  $2.6 \times 10^5$  n/s entering the active volume, but we measured  $6 \times 10^4$  n/s.
- Our collimator was designed around an **8 mm** neutron production spot diameter within the DD generator, but the measured diameter was much closer to **25 mm**.
- This reduced the NR event rate in the active volume from ~15 Hz to ~5 Hz.
- The camera was pulled closer to the active volume to capture more light.
  - This further reduced the contained NR rate in the ROI to ~2 Hz, which we observe in the data.



#### Science operations

- First science run
  - o 17/07/23 03/08/23
- Second science run
  - o <u>15/01/24 06/02/24</u>
- Data taken using D-D neutron generator recorded continuously during 10 hour long shifts.
  - $\circ$  50% of our data remains blinded.
  - Approximately 500,000 NRs in total.
- Calibration runs with <sup>55</sup>Fe every 3 hours.
- We replaced the gas medium once/twice per week.



Summary of gain and gain resolution over the course of first science run.



#### Backgrounds

- We do not expect to be limited by background.
  - We wanted to confirm this by measuring the sideband outside the energy and spatial ROI.
- **Secondary NRs** could create a split topology, similar to Migdal.
  - We can exclude these with kinematic and parametric constraints.
- Compton scatters of γ-rays from neutron inelastic scattering can create events with NR + ER.
  - This is the main source of background.



#### (Astropart. Phys. 151 (2023) 102853)

| Component                              | Topology                                 | D-D neutrons |             |  |
|----------------------------------------|------------------------------------------|--------------|-------------|--|
| Component                              | Topology                                 | >0.5         | 5-15  keV   |  |
| Recoil-induced $\delta$ -rays          | Delta electron from NR track origin      | $\approx 0$  | 0           |  |
| Particle-Induced X-ray Emission (PIXE) |                                          |              |             |  |
| X-ray emission                         | Photoelectron near NR track origin       | 1.8          | 0           |  |
| Auger electrons                        | Auger electron from NR track origin      | 19.6         | 0           |  |
| Bremsstrahlung processes <sup>†</sup>  |                                          |              |             |  |
| Quasi-Free Electron Br. (QFEB)         | 3) Photoelectron near NR track origin    |              | $\approx 0$ |  |
| Secondary Electron Br. (SEB)           | Photoelectron near NR track origin       | 115          | $\approx 0$ |  |
| Atomic Br. (AB)                        | Photoelectron near NR track origin       | 70           | $\approx 0$ |  |
| Nuclear Br. (NB)                       | Photoelectron near NR track origin       | $\approx 0$  | $\approx 0$ |  |
| Neutron inelastic $\gamma$ -rays       | Compton electron near NR track origin    | 1.6          | 0.47        |  |
| Random track coincidences              |                                          |              |             |  |
| External $\gamma$ - and X-rays         | Photo-/Compton electron near NR track    | $\approx 0$  | $\approx 0$ |  |
| Trace radioisotopes (gas)              | Electron from decay near NR track origin | 0.2          | 0.01        |  |
| Neutron activation (gas)               | Electron from decay near NR track origin | 0            | 0           |  |
| Muon-induced $\delta$ -rays            | Delta electron near NR track origin      | $\approx 0$  | $\approx 0$ |  |
| Secondary nuclear recoil fork          | NR track fork near track origin          | -            | $\approx 1$ |  |
| Total background                       | Sum of the above components              |              | 1.5         |  |
| Migdal signal                          | Migdal electron from NR track origin     |              | 32.6        |  |
| Migdal signal                          | Migdal electron from NR track origin     |              | 32.6        |  |



#### Backgrounds

- We do not expect to be limited by background.
  - We wanted to confirm this by measuring the sideband outside the energy and spatial ROI.
- **Secondary NRs** could create a split topology, similar to Migdal.
  - We can exclude these with kinematic and parametric constraints.
- Compton scatters of γ-rays from neutron inelastic scattering can create events with NR + ER.
  - This is the main source of background.



#### (Astropart. Phys. 151 (2023) 102853)

| Component                              | Topology                                 | D-D neutrons    |             |
|----------------------------------------|------------------------------------------|-----------------|-------------|
| Component                              | Topology                                 | >0.5            | 5-15  keV   |
| Recoil-induced $\delta$ -rays          | Delta electron from NR track origin      | $\approx 0$     |             |
| Particle-Induced X-ray Emission (PIXE) |                                          |                 |             |
| X-ray emission                         | Photoelectron near NR track origin       | 1.8             |             |
| Auger electrons                        | Auger electron from NR track origin      | 19.6            | 0           |
| Bremss Eliminated by ap                | plving an energy thre                    | sho             | ld          |
| Quasi-Free Electron Br. (QFEB)         | Photoelectron near NR track origin       | 112             | $\approx 0$ |
| Secondary Electron Br. (SEB)           | Photoelectron near NR track origin       | 115             |             |
| Atomic Br. (AB)                        | Photoelectron near NR track origin       | 70              |             |
| Nuclear Br. (NB)                       | Photoelectron near NR track origin       |                 |             |
| Neutron inelastic $\gamma$ -rays       | Compton electron near NR track origin    | 1.6             | 0.47        |
| Random track coincidences              |                                          |                 |             |
| External $\gamma$ - and X-rays         | Photo-/Compton electron near NR track    |                 |             |
| Trace radi <b>Eliminated b</b>         | <b>ITO</b> timing resolution             | on <sup>2</sup> | 0.01        |
| Neutron activation (gas)               | Electron from decay near NR track origin | 0               |             |
| Muon-induced $\delta$ -rays            | Delta electron near NR track origin      |                 |             |
| Secondary nuclear recoil fork          | NR track fork near track origin          | -               | $\approx 1$ |
| Total background                       | Sum of the above components              |                 | 1.5         |
| Migdal signal                          | Migdal electron from NR track origin     |                 | 32.6        |



#### Measuring the neutron inelastic $\gamma$ -ray sideband

- We have constructed a detailed GEANT4 detector geometry to calculate the expected number of  $\gamma$ -rays.
- The number of simulated and measured NR + ER coincidences is consistent.
- The expected (and measured) number of ERs produced within 3 mm of an NR vertex is very small (good news).





Classification

#### Beginning the search for Migdal with machine learning

- YOLOv8 is a state of the art object detection algorithm.
- Object detection simultaneously classifies and localizes (with bounding boxes) any number of objects of interest in an image.
- Pipeline provides online deliverables, including mixed-field particle ID and NR energy spectra in real time.

30

20

10

0 -

0

Length [mm]



4.0

3.5

3.0 log(Intensity + 1)

#### YOLOv8 for data reduction

- YOLO currently operates on the images from the camera subsystem.
- YOLO finds several ERs within the vicinity of NRs.
- Keeping only frames with a single ER and NR within 6 mm of each other reduces a sample of **20 million frames** to **1,641**.
- Are these all Migdal? **No.**
- Camera exposure time (8.33 ms) is long enough for (few) events to pileup.
- We can resolve this with the ITO subsystem.

#### 6 randomly chosen events from a sample of ERs + NRs with centroid distance < 6 mm



y [pixel] 08

60

380

150

140

130

< [bixel]</pre>

100

90

80

400

440

x [pixel]

460

x [pixel]

420









2.0



#### Camera coincidences rejected in ITO

- The ITO's 2ns timing resolution allows for separation of events that pileup due to the camera's 8.33ms exposure time.
- The example on the right looks Migdal-like in the camera.
- In the ITO we see **these are two separate events** which occurred ~few ms apart.
- The ITO is vital for rejecting these coincidences.
  - If an event does not appear in the ITO, we reject it outright as a coincidence.



#### Summary



- The MIGDAL experiment aims to perform an unambiguous observation of the Migdal effect.
- Perpendicular optical and charge based planar readouts are combined to achieve 3D reconstruction of tracks.
- The detector is performing as designed.
- We have acquired several weeks of stable DD data. We will collect more.
- Data analysis of the two science runs is ongoing (stay tuned).
- Potential backgrounds appear to be as expected.
- YOLOv8 object identification allows fast feedback and event selection (arXiv.2406.07538).



# Backup

#### Papers

- 1. A. Migdal Ionizatsiya atomov pri yadernykh reaktsiyakh, ZhETF, 9, 1163-1165 (1939).
- 2. A. Migdal Ionizatsiya atomov pri α- i βraspade, ZhETF, 11, 207-212 (1941).
- 3. M.S. Rapaport, F. Asaro and I. Pearlman Kshell electron shake-off accompanying alpha decay, PRC 11, 1740-1745 (1975).
- 4. M.S. Rapaport, F. Asaro and I. Pearlman L- and M-shell electron shake-off accompanying alpha decay, PRC 11, 1746-1754 (1975).
- 5. C. Couratin et al., First Measurement of Pure Electron Shakeoff in the  $\beta$  Decay of Trapped 6He+ Ions, PRL 108, 243201 (2012).
- 6. X. Fabian et al., Electron Shakeoff following the  $\beta$  + decay of Trapped 19Ne+ and 35Ar+ trapped ions, PRA, 97, 023402 (2018).

| T. 9 | Турнал | эксперим | ентальн       | ой и те       | оретиче    | ской фи    | suxu  | Выл. 10 |
|------|--------|----------|---------------|---------------|------------|------------|-------|---------|
|      |        |          |               | 1939          |            |            | 1.    |         |
|      | -      |          |               |               |            |            |       |         |
|      |        |          |               |               |            |            |       |         |
|      |        |          |               |               |            |            |       |         |
|      |        |          |               |               |            |            |       |         |
|      |        |          |               |               |            | 1. 1. 1. 1 |       |         |
|      |        |          |               |               |            |            |       | 1 1997  |
|      |        |          |               |               | POILIN     | OFAFT      | vou   | 4       |
|      | иони   | ізация а | TOMOB         | пьи яч        | EPHDIA     | PLANU      | una , |         |
|      |        |          | A.            | Миллал        | the second |            |       |         |
|      |        |          | CONTRACTOR OF | S CLASSING IN |            |            |       |         |

При вдерных столкновениях или деявитеграциях, сопровождлющится передачей большой внертии, должна, проискодить йоналация атомов отдачи. При малых скоростих ядра отдани поседенее успешает умлеть влеттроим, и нопизация не процеходит; навоборот, при очень бол ших скоростих даро имлетает из оболочки, не уплекая ее за собой. При не сампиом больших внертиях отдачи нонизация происходит только в наружных, слабо свизанных оболочках.

При столкновениях атемов с исйтронных такой нескципы является единственным, приводящим к заметной нонялации (иструдно убедиться, что контзация, обусоленная матиятым и слецифическим деринам наявнолействием исйтрона с электроном, крайне мала-соответствующо сечение в исрови случае порядка 10<sup>-75</sup> се<sup>4</sup>, во этором - порядка 10<sup>-56</sup> се<sup>4</sup>.

Вероятность такой нонкващия может быть очень просто рассчитана. Так как интерессы случай большки знертай отдачи и, следовательно, больших скоростей падмощей частицы, то врема соударения с ядом много меньше влектронных периодов. Следовательно, паменские скорости ядра происходит резко нединбатически, так что <sup>20</sup> – функция влектронов – не может наменяться за премя стоякновения.

Нетрудио, кроме того, видеть, что расстояние, на которое смещается ядро за время столкновения, имеет порядок  $\overset{M}{M_1}P$ , где  $M_1$ —касса падающей частицы,  $M_2$ —масса ядра, P—прицельное расстояние. Так как при заметной вередачо энерган P кного меньше размеров электроиных оболочек, то ядроможно считать не сместивника за время удара.

Для получения вероятности возбуждения там нонизация пужно неходную #-функцию атома разловить по собствонные функциям данаущегося нара. Можно поступить несколько инако, в насеню поребіти к слетсеке коорлинат, в которої ядоо поконтся; тогда собственными функциям задачи будут обычвно функции покопцегоси ядов. Начальная функция Ф, при этом преобразуется в заражение:

et Ing # (r1, r2 ... Ff).

Действительно, мноянитель е<sup>ны 1</sup>1 представляет собой Ф-функцию центра янерции оболочки, который в старой системе координат поконлея, а в новой движется со скоростию у рявной по величные и противоположной по направлению скорости яда.

вленяю скороля начествлятие атома в рассматриваемой системе координат Пусть конечное состояние атома в рассматриваемой системе координат дается функцией  $\sigma_1(r_1, r_2, ..., r_p)$ . Так как ядор за время удара не сместилось, то координаты электропов в  $T_1$  отечитаны от той же точки, что и в  $T_p$ . Вероятиесть переход в конечное состояние дается выражением:

(1)

#### CF4 nuclear recoil spectrum & Migdal rates

- Higher rate of NRs at lower energies (Astropart. Phys. 151 (2023) 102853).
- Higher rate of Migdal events at higher energies (fluorine kinematic end-point).



\*per day at nominal neutron rate

IDM 2024

#### Assembly at NILE





#### PMT

- The PMT is used to trigger the DAQ (on S2 signal) and obtain an absolute depth coordinate.
- The depth is calculated from the S1-S2  $\Delta t$  and the drift velocity in the gas.
- PMT is digitised at 2 ns with 8-bit resolution.



Hamamatsu R11410 PMT



#### GEM mask

- Avoid tracks falling outside the camera field of view by attaching a mask to the TPC.
- This blocks NRs from being amplified outside the 80 x 45 mm<sup>2</sup> camera area.
- The ITO readout now sees the same active area as the camera.
- We also have a 100 x 60 mm<sup>2</sup> mask.
  - $\circ$  We plan to test this configuration soon.



#### **Optical distortion correction**

- We characterise the distortion by imaging a regular grid and measuring the deflection of the lines as a function of radial distance.
- Barrel distortion in the camera can be parameterised by a 5<sup>th</sup>-order polynomial.
- Imaging closer to the focal plane increases distortion.



#### Flat field correction in the camera

- We use an <sup>55</sup>Fe source as an energy calibration.
- Interactions occur over the entire volume, so we can perform a position-dependent calibration.
- Below is a map of the relative intensities of <sup>55</sup>Fe events.



#### Capabilities of the ORCA Quest

- The ORCA Quest is capable of 'photon-number resolving' at the cost of a slower, 5 Hz readout rate.
- Using this mode risks pileup of events, only useful for low-noise calibration.



#### Camera afterglow

- The ORCA Quest appears to feature an 'afterglow' in the subsequent frame following bright events.
- In the frame which follows each high-energy track, we see an afterglow of ~1 photoelectron in many pixels.
- This appears to be a persistence for {N} frames, rather than {T} exposure time.
- We can simply mask bright areas in the subsequent frame to avoid confusion.



#### **Glass GEM considerations**

- Light can refract in the glass substrate and reflect on the copper surfaces.
- We experience a continuous reduction in the gas gain while operating with highly ionising particles, requires regular voltage adjustment to maintain gain.



#### Noble gas mixtures

• We plan to operate with DD neutrons in a fraction of argon gas later in 2024.





#### Light yield enhanced with addition of Ar.

L. Millins (MIGDAL), 16th Pisa Meeting on Advanced Detectors

May 31 2024, Isola d'Elba

### MIGDAL upgrade

- Higher resolution digitiser (CAEN V1730).
  - 14-bit instead of 8-bit.
- Doubling the number of ITO strips to 240, increasing spatial resolution in the ITO subsystem.
  - $\circ$  0.417 mm instead of 0.833 mm.
- Additional amplification stage.
  - Testing addition of a third GEM (kapton, glass, or ceramic).
  - Testing different structures (M-ThGEMs).
- Reduction of reflections.
  - Opaque GEMs.
  - Considering dark-coating TPC.

