1 of 21

Ab-initio �Density Functional Theory (DFT) and beyond-DFT methods: A short review

Abdul Muhaymin

Graduate student, MSN, Bilkent University

1

2 of 21

Outline

2

What

    • Ab-initio or first-principles
    • Density Functional Theory (DFT)

Why

    • Laboratories ❌, Computers ✅
    • High-throughput investigations

How

    • Quantum ESPRESSO, PySCF, FLEUR…
    • ChatGPT!?

3 of 21

Ab-initio or first-principle methods

3

  • No empirical/experimental input
  • Based on fundamental theory

    • Density Functional Theory (DFT)
    • Molecular Dynamics (MD)
    • Quantum Monte Carlo (QMC)

Multiscale modeling?

4 of 21

  • Hohenberg-Kohn Theorem:
    • One-to-one mapping between ground state electron density and ground state Hamiltonian
    • There exists a ground state energy functional whose global minimum value is the true ground state energy (and corresponding density is the true density)

  • Kohn-Sham equation:
    • Non-interacting version of the Schrödinger equation

4

Density Functional Theory

5 of 21

Many-Body Hamiltonian

5

(Hung et al, 2021)

6 of 21

Kohn-Sham Equation

6

(Hung et al, 2021)

7 of 21

Approximations

  • Born-Oppenheimer
  • Pseudopotential (PP)
    • LDA
    • GGA
    • meta-GGA
    • hyper-GGA
    • RPA
  • Basis sets – periodic (plane-wave) or local
  • Relativistic effect – scalar or full

7

8 of 21

DFT as a black box

8

  • Only a ground state theory
  • Fails miserably in case of *almost everything*

9 of 21

Why should one use DFT?

  • To understand, predict, and design materials and devices
  • To support, guide, streamline, and inspire experimental efforts
  • To suggest novel microscopic physical theories

9

(Marzari et al, 2021)

10 of 21

Structural

  • Crystal structure
  • Bond length, angle, dihedral

10

11 of 21

Electronic

  • Band structure
  • Density of states
  • Charge density

11

12 of 21

Magnetic

    • Spin-polarized DFT
  • Magnetic moment
  • Magnetic order
  • Half-metallicity

  • Curie temperature
  • Superconductivity

12

(Durgun et al, 2006)

13 of 21

Mechanical

  • Pressure/stress tensor
  • Young modulus
  • bulk modulus
  • Strain induced properties

13

(Barai et al, 2020)

14 of 21

Vibrational and Thermal

  • Phonon dispersion
  • Phonon DOS
  • Thermal conductivity
  • Heat capacity
  • Thermoelectric Figure of Merit

14

(Çakıroğlu et al, 2020)

(Shakouri, 2011)

15 of 21

And many more…

  • Optical properties
  • Spectroscopic properties
  • Material simulated under E-field, H-field, strain
  • Anisotropy

15

16 of 21

Most cited papers in journals published by APS�(12 in top 100 in Nature)

16

17 of 21

Why should one use DFT?

Impossible to fabricate millions of materials in a day

With a supercomputer, high-throughput calculations are possible

17

Not just fabrication, but characterization too!

However, ❌ excited states

❌ magnetic system

❌ band gap problem

18 of 21

Beyond regular DFT

  • DFT+U: Hubbard corrected, localization
  • DFT+U+V: on-site U, inter-site V
  • DFT+U+J: Hund correction J
  • Hybrid functionals (exact exchange)
  • GW : Many-Body Perturbation Theory
  • TDDFT: excited states
  • BSE: electron-hole interaction

18

19 of 21

How to use DFT?

  • Quantum ESPRESSO
    • PP, plane wave basis set, open-source, free, community

  • FLEUR
    • All electron, FLAPW+lo basis set, open-source, free

  • PySCF
    • PP, localized basis set (Gaussian), open-source, free

19

See wikipedia.org/wiki/List_of_quantum_chemistry_and_solid-state_physics_software

for a comprehensive list with summary of the main functionalities.

20 of 21

DFT with ChatGPT!?

  • Not quite right! But…

20

  • Synthesized over 700 materials within 2023.
  • The future is GNoME, Ferminet, chemGPT…

(Merchant et al, 2023)

21 of 21

Thanks for your attention. Question?

  • Barai, P., Ngo, A. T., Narayanan, B., Higa, K., Curtiss, L. A., & Srinivasan, V. (2020). The role of local inhomogeneities on dendrite growth in LLZO-based solid electrolytes. Journal of the Electrochemical Society, 167(10), 100537.
  • Çakıroğlu, O., Mehmood, N., Çiçek, M. M., Aikebaier, A., Rasouli, H. R., Durgun, E., & Kasırga, T. S. (2020). Thermal conductivity measurements in nanosheets via bolometric effect. 2D Materials, 7(3), 035003.
  • Durgun, E., Senger, R. T., Mehrez, H., Dag, S., & Ciraci, S. (2006). Nanospintronic properties of carbon-cobalt atomic chains. Europhysics Letters, 73(4), 642.
  • Hung, N. T., Nugraha, A. R., & Saito, R. (2022). Quantum ESPRESSO Course for Solid-State Physics. CRC Press.
  • Marzari, N., Ferretti, A., & Wolverton, C. (2021). Electronic-structure methods for materials design. Nature materials, 20(6), 736-749.
  • Merchant, A., Batzner, S., Schoenholz, S. S., Aykol, M., Cheon, G., & Cubuk, E. D. (2023). Scaling deep learning for materials discovery. Nature, 1-6.
  • Shakouri, A. (2011). Recent developments in semiconductor thermoelectric physics and materials. Annual review of materials research, 41, 399-431.

21

References