Detection and Segmentation in CV
Semantic vs Instance vs Panoptic segmentation
Pros and cons
Detection. Intersection over Union (IOU).
Detection. Average precision (AP).
https://medium.com/towards-data-science/what-is-average-precision-in-object-detection-localization-algorithms-and-how-to-calculate-it-3f330efe697b
Detection. Average precision (AP).
https://medium.com/towards-data-science/what-is-average-precision-in-object-detection-localization-algorithms-and-how-to-calculate-it-3f330efe697b
Detection. Mean average precision (MAP).
https://medium.com/towards-data-science/what-is-average-precision-in-object-detection-localization-algorithms-and-how-to-calculate-it-3f330efe697b
Detection. Non maximum suppression (NMS)
https://learnopencv.com/non-maximum-suppression-theory-and-implementation-in-pytorch/
NMS
Input: ({bbox_i, score_i}} from 1 to N
Sort in the descending order of score_i
for i = 1…N
Take bbox_i
Skip all boxes whose IoU with bbox_i > threshold
Detection. Ideas.
UNet
R-CNN
https://arxiv.org/pdf/1311.2524
Fast R-CNN
https://arxiv.org/pdf/1504.08083
Faster R-CNN
https://arxiv.org/pdf/1506.01497
Key novelty: the proposals come from “sparse sliding window search”
Mask R-CNN
https://arxiv.org/pdf/1703.06870
Predicting mask for instance segmentation
Single-shot detector
https://arxiv.org/pdf/1512.02325
RetinaNet
https://arxiv.org/pdf/1708.02002