1 of 47

CONFERENCISTA: INGA. PATRICIA JUÁREZ

EL MUESTREO ESTADÍSTICO

2 of 47

DEFINICIONES

 

  • MUESTREO ESTADÍSTICO:

Método que permite conocer características de la

población por medio de una parte de dicha población llamada

muestra.

 

  • POBLACIÓN:

Es el conjunto total de elementos a investigar.

  • MUESTRA:

Es una parte de la población; existen 2 tipos:

De juicio o criterio y probabilística, aleatoria o al azar

 

3 of 47

DEFINICIONES

  • ESTADISTICA INDUCTIVA O INFERENCIAL

Es aquella en la cual es posible obtener conclusiones de una población, con respecto a una muestra, con la que se infiere.

  • PARAMETROS:

Medida descriptiva calculada a partir de los datos de una población. Eje. El promedio, la moda, desviación estándar.

  • ESTADÍSTICO O ESTADÍGRAFO

Medida descriptiva calculada a partir de los datos de una muestra.Eje. El promedio, la moda, desviación estándar, etc.

4 of 47

OBJETIVOS DEL MUESTREO�

a) Caracterizar una muestra

b) Estimar parámetros poblacionales por medio de una muestra. A esto se le conoce como Inferencia Estadística.

c) Probar Hipótesis: Permite aceptar o rechazar una hipótesis de conformidad con el grado de significación definida previamente.

 

5 of 47

VENTAJAS:

Investiga solo una parte de la población.

- Es económico de realizar

- Da mayor exactitud (resultados más confiables)

- Proporciona mejor información oportunamente.

- Permite mejor supervisión

DESVENTAJAS:

- No puede aplicarse en poblaciones pequeñas.

- Requiere de personal calificado.

- La repercusión de los errores es mayor en la muestra.

VENTAJAS Y DESVENTAJAS DEL MUESTREO

6 of 47

1.   Cuando es imposible contar todos los elementos de la población Eje. Las estrellas del universo, la arena de las playas, los peces de un lago, los glóbulos rojos en la corriente sanguínea, etc.

 

2.   Cuando en la prueba se destruye el objeto, Eje. La duración en horas de un tubo fluorescente, la duración y resistencia de los neumáticos.

 

3.   Cuando el tiempo y el costo son insuficientes, Eje: Cuando se quiere tomar una decisión rápida y se dispone de muy poco tiempo para estimar el porcentaje de votos que tendría su favor determinado candidato.

 

4.   En Auditoría. Seleccionar un grupo de facturas en un determinado día para verificar el IVA, tomar una muestra para verificar existencia físicas de un inventario.

USOS DEL MUESTREO

7 of 47

MÉTODOS DE SELECCIÓN DE UNA MUESTRAS

Puedes ser:

  • Simple
  • Doble
  • Multiple

Manera de elegir los elementos:

  • De juicio o no probabilístico
  • Muestreo al al azar

 

8 of 47

(Muestra) (Población)

MEDIDA ESTADÍSTICO PARÁMETRO

_

Media X μ

Varianza S² σ²

Desviación Estándar S σ

Número de elementos n N

SIMBOLOGÍA BÁSICA

9 of 47

TIPOS DE MUESTREO

 

MUESTREO PROBABILÍSTICO, ALEATORIO O AL AZAR:

Es cuando los elementos de la población tienen una oportunidad conocida de ser seleccionado en la muestra. No interviene el crédito personal. Este puede ser:

  • Muestreo Aleatorio Simple
  • Muestreo Sistemático
  • Muestreo Estratificado
  • Muestreo de Conglomerados

 

10 of 47

MUESTREO SISTEMATICO

Consiste en que los elementos de la muestra se obtienen de una manera ordenada a partir del punto de partida el cual lo proporciona la tabla de números aleatorios.

 

MUESTREO ESTRATIFICADO:

En este método divide el número de elementos de la población en estratos o grupos de elementos homogéneos (saldos, precios. Etc.) y para obtener los elementos de la muestra, se procede de la misma manera que en Muestreo Aleatorio Simple. o Muestreo Sistemático.

 

11 of 47

MUESTREO ALEATORIO SIMPLE

El muestreo probabilístico aleatorio o al azar consiste en que los elementos de la muestra son seleccionadas aleatoriamente de tal manera que cada elemento tiene igual oportunidad de ser seleccionado, por lo tanto se conoce la probabilidad de selección.

12 of 47

MUESTREO DE CONGLOMERADOS:

Este método divide el número de elementos de la población en grupos homogéneos y Se obtiene los elementos de la muestra de la misma forma que el anterior.

2)MUESTREO DE CRITERIO O NO PROBABILÍSTICO:

Es cuando la selección de los elementos se hace a criterios personales.

13 of 47

Si de una población se obtiene todas las muestras posibles de tamaño N y a cada una se le calcula su promedio, entonces se tendrá una distribución muestral de la media. Si el tamaño de las muestras es grande (n mayor o igual que 30) y mientras más grande sea, la distribución muestral de la media tiende a formar una curva normal.

La estimación _ de una media poblacional (μ ) a partir de una media muestral (X), se fundamenta en el principio matemático que dice: El promedio de las medias de todas las muestras que es posible extraer de una población siempre es igual a la verdadera media de la población.

DISTRIBUCIÓN MUESTRAL DE LA MEDIA

14 of 47

Ejemplo:

Las ventas diarias de una empresa y sus 5 sucursales (A, B, C, D, y E), son: Q4.00, Q 5.00, Q6.00, Q7.00 y Q 8.00 respectivamente. Se pregunta: Cuántas muestras de tamaño 3 se pueden obtener y calcular la Media de la Población y la Media de las Muestras.

 

5C3 = 5 ! = 10/R

3!(5-3)!

R/ Se pueden obtener 10 muestras

 

Las muestras son las siguientes: ABC, ACD, ADE, BDE, BCD, BEA, CDE, CEA, DAB y EBC

15 of 47

La Distribución Muestral de la Media queda de la siguiente forma:

MEDIA DE LA POBLACION =

30

5

=

6

 

 

El promedio de todas las medias, debe ser igual al promedio poblacional.

 

 

 

SUCURSAL

QUETZALES

A

4

B

5

C

6

D

7

E

8

Total Ventas

30

16 of 47

MUESTRAS POSIBLES

VENTAS

TOTAL

X

ABC

4+5+6

15

5,00

ACD

4+6+7

17

5,67

ADE

4+7+8

19

6,33

BDE

5+7+8

20

6,67

BCD

5+6+7

18

6,00

BEA

5+8+4

17

5,67

CDE

6+7+8

21

7,00

CEA

6+8+4

18

6,00

DAB

7+4+5

16

5,33

EBC

8+5+6

19

6,33

 

 

 

60,00

17 of 47

6 = 6

μ = X

Con lo cual se comprueba el principio matemático.

MEDIA DE LA MUESTRA

=

6,00

 

10

 

 

60

18 of 47

ERROR ESTANDAR DE LA MEDIA

Medida estadística que mide la dispersión de todas las medias muestrales de tamaño “n” alrededor de la media poblacional. Se representa por:

σx = Cuando es estimado con los datos de la población

Sx = Cuando es estimado con los datos de la muestra.

 

En otras palabras, el Error Estándar de la Media es la desviación estándar de la distribución muestral de la media.

CUANDO SE CONOCE LA DESVIACIÓN ESTÁNDAR DE LA

POBLACIÓN (σ):

 

Sx = σ . N – n Se conoce σ y n . 100 5%

n N – 1 N

Población finita

19 of 47

 

CUANDO SE DESCONOCE LA DESVIACIÓN ESTÁNDAR DE LA POBLACIÓN (σ) Y SE CONOCE LA DESVIACIÓN ESTÁNDAR DE LA MUESTRA (S):

  Sx = S N – n

n N - 1

 

Para Población Infinita. Se conoce S y n . 100 5%

N

TOMANDO LOS DATOS DEL EJEMPLO ANTERIOR, EL CÁLCULO DEL ERROR ESTÁNDAR DE LA MEDIA SE PUEDE CALCULAR DE LA SIGUIENTE FORMA:

20 of 47

SUCURSAL 2

X ( X - μ ) ( X - μ )

A 4 - 2 4

B 5 - 1 1

C 6 0 0

D 7 1 1

E 8 2 4

30 10

  μ = Σx = 30 = 6

N 5

CALCULAMOS LA DESVIACIÓN ESTÁNDAR DE LA MEDIA POBLACIONAL

σ = Σ (x- μ) = 10 = 2 = σ = 1.41

N 5

 

21 of 47

MUESTRAS POSIBLES

 

 

 

(x-X)

(x-X)2

ABC

4+5+6

15

5.00

-1.00

1.00

ACD

4+6+7

17

5.67

-0.33

0.11

ADE

4+7+8

19

6.33

0.33

0.11

BDE

5+7+8

20

6.67

0.67

0.44

BCD

5+6+7

18

6.00

0.00

0.00

BEA

5+8+4

17

5.67

-0.33

0.11

CDE

6+7+8

21

7.00

1.00

1.00

CEA

6+8+4

18

6.00

0.00

0.00

DAB

7+4+5

16

5.33

-0.67

0.44

EBC

8+5+6

19

6.33

0.33

0.11

 

 

 

 

60.00

3.33

CALCULAMOS LA DESVIACION ESTANDAR

DE LA MEDIA DE LAS MUESTRAS

22 of 47

S = Σ (X-X)2 S = 3.3333 S = 0.57736

n 10

 

CON APLICACIÓN DE LA FÓRMULA:

σ x = 1.4142135 . 5 - 3 =

Г 3 5 - 1

 

σ x = 0.816497x 0.707106 б x = 0.57736

 

n/N x 100 = 3/5 x 100 = 60% > 5%

 

23 of 47

Después de seleccionada una muestra es necesario estimar los parámetros poblaciones, y estos pueden ser, la media, el total de la variable, la varianza, etc.,

 

  1. Estimación puntual X = μ

b) Estimación por Intervalos de Confianza

La media se estima dentro de un intervalo de acuerdo a una probabilidad de confianza que se acerca que puede ser 95 % y 99% por lo general. μ = X + - Z (Sx)

 

ESTIMACION DE PARAMETROS

24 of 47

TAMAÑO DE LA MUESTRA

El tamaño de la muestra o sea el número de elementos a seleccionar no debe ser a criterio del investigador puesto que existen varias fórmulas para calcular el tamaño óptimo de una muestra, una de ellas es la siguiente:

2 2

n = z . σ . N_____

2 2 2

z .σ + N (Ea)

Ea = Error absoluto de muestreo.

25 of 47

EJEMPLO

El contador de un supermercado decidió tomar una muestra aleatoria , de un grupo de facturas numeradas de la 001 a la 200. Se pide:

26 of 47

a) Determinar el tamaño óptimo de la muestra, con un nivel de confianza del 99% y un error de muestreo de Q. 9.00 miles; si se sabe que la desviación estándar de la población es 8

  • FÓRMULA PARA DETERMINAR EL TAMAÑO DE LA MUESTRA

2 2

n = z . б . N_____

2 2 2

z .б + N (Ea)

27 of 47

б = 8 Desviación estándar de la población

N = 200 Total de elementos de la población

Ea = 9 Error absoluto del muestreo

Z = 2.57 # de desviaciones estándar de acuerdo a la probabilidad o nivel de confianza (99%)

Facturas a examinar de la 001 a la 200

Z = 0.99 = 0.495 Se busca dentro de la tabla II (áreas bajo la

2 curva normal de probabilidad)

Valor encontrado 0.4949 en fila 2.5 col. 7

Z = 2.57

28 of 47

Sustitución de valores en la fórmula

n = Z ² σ ² N

Z ² σ ² + N (Ea) ²

n = (2.57) ² (8) ² (200)

(2.57) ² (8) ² + (200) (9) ²

n = 84542.72 = 84542.72 = 5

422.7136 + 16200 16622.71

TAMAÑO

DE LA

MUESTRA

29 of 47

B) Seleccionar las facturas utilizando la iniciando en la hoja 1, fila 6, columna 10 con los siguientes convencionalismos:

- columna hacia abajo

- Al finalizar siga en la columna de la derecha hasta completar la muestra.

- Tome los últimos dígitos

Ej. Si la Población es 1000 tomo los últimos 4 dígitos

Si la población es 200 se toman los últimos 3 dígitos

***Los dígitos a tomar dependen del No de dígitos de la población

30 of 47

Las 5 MUESTRAS SELECCIONADAS son las siguientes

  • No. 053
  • No. 045
  • No. 030
  • No. 104
  • No. 178

31 of 47

  • PROBLEMA No. 4 (Examen Final 2007)
  • El gerente financiero le ordena que le seleccione una muestra aleatoria de 5 facturas las cuales están numeradas de 001 a 201. Elegir las facturas con base en la tabla de números aleatorios, iniciando en la primera hoja, fila 5 y columna 9, verticalmente, últimos dígitos, al terminar una columna (completa) puede seguir en la siguiente si es necesario.

32 of 47

  • MUESTRAS SELECCIONADAS:
  • 1.) 013
  • 2.) 014
  • 3.) 158
  • 4.) 106
  • 5.) 180

33 of 47

FORMULAS:

ERROR ABSOLUTO = E (a) = +,- Z. Sx

ERROR RELATIVO = E(r) = Z. Sx

x

ERROR ABSOLUTO Y RELATIVO

DEL MUESTREO

34 of 47

EJEMPLO:

Lo han contratado para que haga auditoria a los saldos de 7 clientes de la empresa “Si no cobro, no me pagan” , para lo cual le presentan el detalle por cliente y sus saldos en miles de quetzales:

  1. 25 23 28 02 14 80 122 15 18
  2. 24 18 16 08 19 14 43 22 11

12 18 13 88 95 64

APLICACIÓN PRACTICA DE

MUESTREO ALEATORIO

35 of 47

Con la información anterior deberá realizar:

a)      Seleccionar los clientes utilizando la tabla de números aleatorios, iniciando en fila cincuenta y dos, en la columna dos, con el criterio siguiente: Columna hacia la derecha, al terminar una fila puede pasar con la siguiente, hacia abajo, últimos dígitos.

b)      La desviación estándar de la muestra

c)      Estimar por intervalo el saldo promedio de clientes, con una probabilidad del 99%

d)      Estimar puntualmente el saldo promedio poblacional de los clientes

36 of 47

PASO No. 1: SE ORDENAN ASCENDENTEMENTE Y NUMERAN CORRELATIVAMENTE LOS DATOS DE LOS CLIENTES

Cliente No.

Saldo

01

2

02

8

03

10

04

11

05

12

06

13

07

14

08

14

09

15

10

16

11

18

12

18

13

18

Cliente No.

Saldo

14

19

15

22

16

23

17

23

18

24

19

25

20

28

21

43

22

64

23

80

24

88

25

95

26

122

37 of 47

PASO No. 2: SELECCIONAR LAS MUESTRAS MEDIANTE LA DE ACUERDO AL CRITERIO INDICADO

NOTA: Si no permitimos que aparezca el # seleccionado varias veces el muestreo sin reposición y la población se vuelve finita.

Por el contrario si permitimos que el número seleccionado aparezca varias veces el muestreo será con reposición y la población se vuelve infinita.

Cliente No.

Saldo Q.

20

28

22

64

15

22

01

2

16

23

24

88

13

18

Total

245

Respuestas a

Inciso a)

38 of 47

PASO No. 3: CALCULAR LA MEDIA DE LA MUESTRA (por Estimación

Puntual, esta es igual a la Media de la Población)

PASO No. 4: CALCULAR LA DESVIACIÓN ESTÁNDAR DE LA MUESTRA

Clientes

Saldos

(x – X)

(x – X)2

20

28

-7

49

22

64

29

841

15

22

-13

169

1

2

-33

1,089

16

23

-12

144

24

88

53

2,809

13

18

-17

289

245

0

5,390

X

=

245

7

__

X = 35

39 of 47

PASO No. 5: ESTIMAR EL SALDO PROMEDIO DE LOS CLIENTES

(LA MEDIA POBLACIONAL) CON INTERVALO DE CONFIANZA DEL 99%

S = 5,390 = 770 = S = 27.75

7

Desviación Estándar

de la Muestra

Respuesta a inciso b)

μ = X +,- Z (Gx)

GX = S N - n

n N - 1

GX = 27.75 26 - 7 = 9.14

7 26 - 1

Límite Inferior = μ = 35 – 2.57 (9.14) = 11.51

Límite Superior = μ = 35 + 2.57 (9.14) = 58.49

Respuestas

Inciso c)

40 of 47

PASO No. 6: ESTIMACION DE LA MEDIA POBLACIONAL POR

ESTIMACION PUNTUAL

Media de la Muestra = X = 35

Media de la Población = μ = 35

Respuesta a inciso d)

41 of 47

MUESTREO SISTEMÁTICO

Una vez obtenido el tamaño de la muestra, se determina un intervalo de selección.

i = N

n

Se elige al azar un número i, y se incluye en la muestra cuyo origen corresponde al número elegido. Luego se incluye cada i – esimo elemento a partir del primero seleccionado hasta completar la muestra. Para la estimación de la media puntual y por intervalo, se procede en igual forma que en el muestreo simple.

42 of 47

En este tipo de muestreo la población se subdivide en grupos parecidos entre si llamados estratos y se determina el tamaño de la muestra y esta se reparte o divide entre cada estrato.

Para obtener una muestra estratificada se divide la población en estratos homogéneos y los elementos de la muestra son seleccionados al azar o por método sistemático en cada estrato.

Las estimaciones de la población basadas en la muestra estratificada usualmente tiene mayor precisión (o menor error muestral) que si la población entera fuera muestreada mediante muestreo aleatorio simple. El número de elementos seleccionados de cada estrato puede ser proporcional o desproporcional al tamaño del estrato en relación con la población.

MUESTREO ESTRATIFICADO

43 of 47

La distribución de la muestra se conoce como afijación de la muestra (distribuir la muestra)

_

Estimación puntual = X = μ

_

X = W1 X1 + W2 X2 + ..... Wn Xn

DONDE

W1, W2, WN = ponderación para cada estrato

W = n/N fracción de muestreo (fm)

X1, X2, Xn = promedio para cada estrato.

44 of 47

ESTIMACIÓN POR INTERVALO DE CONFIANZA

_

μ = X + . Z (Sx)

 

Donde:

X = Promedio de la muestra

Z = Valor estandarizado (No. de desv. Estándar de acuerdo al nivel de confianza)

Sx = Error estándar de la media.

Error Estándar de la media:

2 2 2 2 2 2

Sx = W1 S1 + W2 S2 + Wn Sn

n1 n2 nn

 

45 of 47

S = Desviación Estándar

W = Ponderación para cada estrato

 

Desviación estándar de la muestra:

2

S = √ ∑ (x-X)

N

 

46 of 47

EJEMPLO

En 2000 establecimientos comerciales se toma una muestra de 500 establecimientos formando 3 estratos. Para cada uno se calcula la utilidad promedio mensual en quetzales y la desviación estándar, la información es la siguiente:

Estrato Cantidad promedio desviación estándar

I 800 100 20

II 700 800 50�III 500 1300 100

2000

Se pide :

a) Distribuir la muestra con afijación proporcional

b) Estimar Puntualmente la utilidad promedio mensual

c) Estimar por intervalo de confianza la media con un 75% de confianza.

47 of 47

SOLUCIÓN:

Encontrar la fracción de muestreo:

Fm o W = W1 = 800/2000 = 0.40

W2 = 700/2000 = 0.35

W3 = 500/2000 = 0.25

 

a) Distribución proporcional de la muestra:

Estrato I 500 x 0.40 = 200

Estrato II 500 x 0.35 = 175

Estrato III 500 x 0.25 = 125

b) Estimar puntualmente la utilidad promedio mensual

X = W1 X1 + W2 X2 + …. Wn Xn

_

X = 0.40 (100) + 0.35 (800) + 0.25 (1300)

_ _

X = 40 + 280 + 325 X = 645

 

Con base a la muestra se estima que la utilidad promedio es de

Q . 645.00