
OMFIT + git/GitHub

Setup your SSH keys on GitHub
This needs to be done only once, whether you use the gafusion repository or your own fork

Setup GIT

to make sure that your ssh keys are properly setup on the system
where OMFIT is running use: ssh git@github.com

git config --global user.name "YOUR NAME"
git config --global user.email YOUREMAIL@EMAIL.COM
git config --global color.ui auto

Setup your GIT environment where OMFIT is running:

In OMFIT preferences, set your GITHUB username accordingly.
This will allow you to easily access your own fork from within OMFIT.

Importing modules

Modules can be imported from a remote/branch
If these are left blank then OMFIT will import modules as they are in the “Repository directory”

Exporting modules

Users can contribute to OMFIT modules’ development by pushing their changes to the OMFIT-source GitHub
repository directly from within OMFIT. This feature is aimed at lowering the effort for new users to contribute to
the OMFIT physics modules. This is handled within git and the OMFIT GUI as follows:

where:
● remote/branch are the git remote and branch to which the changes will be pushed

To add a remote, just type it in the `Remote` entry. To create a new branch, just type it in the `Branch` entry.

Please note that unless the remote and branch are left empty, OMFIT makes a clone of the original repository
so that it can freely operate on it, without affecting the original repository (making the clone is not
instantaneous). The remote named original_git_repository of the cloned repo points to the original
git repository.

Repo

remote = ‘’
branch = ‘’

If remote and branch are blank, then git is not invoked and the
module is exported in the designated modules directory.
It is up to the user to handle committing the changes and
pushing the updates to GitHub

GitHub

Repo Working
repo1. clone

3. push
remote/branch2. base

remote/branch

remote = ‘orso82’
branch = ‘test’

remote: original_git_repository

Remote and branch indicate on which remote/branch to push
the changes that have been made

GitHub

Repo Working
repo1. clone

3. push
remote/branch

2. base
remote/branch

remote = ‘original_git_repository’
branch = ‘test’

remote: original_git_repository

To perform a commit on the local repository, use
`original_git_repository` as the remote. It will be then up to the
user to sync the changes on GitHub

Exporting modules
What is happening underneath

A

A

im
po

rt

‘AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA’

root[‘SETTINGS’][‘MODULE’][‘commit’]
is initialized when importing a module to
the last commit of the repository where
that module was modified.M

od
ul

e
in

 th
e

O
M

FI
T

tre
e

Base commit

When exporting something OMFIT will
make the diff with respect to the commit
that is specified under
root[‘SETTINGS’][‘MODULE’][‘commit’]
This is what we refer to as the base commit

A

A

im
po

rt

B
export

module

X

‘AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA’

other contributions

M
od

ul
e

in
 th

e
O

M
FI

T
tre

e

A

A

im
po

rt

B

X

W
merge

pu
ll

‘AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA’

M
od

ul
e

in
 th

e
O

M
FI

T
tre

e

export
module

A

A

im
po

rt

B

X W

W
merge

pu
ll

pu
sh

‘AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA’

M
od

ul
e

in
 th

e
O

M
FI

T
tre

e

export
module

A

A

im
po

rt

B

X W

W
merge

pu
ll

pu
sh

‘BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB’

Note that the commit registered in the
module loaded in the OMFIT tree is B, and
not W. This is because W is not what is in
the OMFIT tree (since there was no merge
of X in the OMFIT tree).

However, since W includes the content of
B, including handling of merge conflicts,
we will not be asked to re-handle the same
conflicts for the next export of the module.

After exporting, the base commit stored in
root[‘SETTINGS’][‘MODULE’][‘commit’]
is updated to point to the commit B, after
the export, and before the merge.M

od
ul

e
in

 th
e

O
M

FI
T

tre
e

export
module

A

A

im
po

rt

B

X W

‘BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB’

M
od

ul
e

in
 th

e
O

M
FI

T
tre

e

Base commit

A

A

im
po

rt

B

X W

‘BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB’

C

Y

M
od

ul
e

in
 th

e
O

M
FI

T
tre

e

export
module

A

A

im
po

rt

B

X W

C

‘BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB’

Y

Z
merge

pu
ll

M
od

ul
e

in
 th

e
O

M
FI

T
tre

e

export
module

A

A

im
po

rt

B

X W

C

‘BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB’

Y Z

Z
merge

pu
ll

pu
sh

M
od

ul
e

in
 th

e
O

M
FI

T
tre

e

export
module

A

A

im
po

rt

B

X W

C

‘CCCCCCCCCCCCCCCCCCCCCCCCCCCCC’

Y Z

Z
merge

pu
ll

pu
sh

Again, commit Z includes content of C
including handling of merge conflicts.

The base commit stored in
root[‘SETTINGS’][‘MODULE’][‘commit’]
is updated to point to the commit C, after
the export, and before the merge.

M
od

ul
e

in
 th

e
O

M
FI

T
tre

e

export
module

