
should Symbol.iterator
fallback be a callable check
or an undefined/null check?

iterator helpers stage 3 update

Michael Ficarra • May 2023

https://github.com/tc39/proposal-iterator-helpers/pull/272

iterator helpers
(stage 3 proposal) ECMA-262

Symbol.iterator ⇒ "next" Symbol.asyncIterator ⇒ Symbol.iterator

Options
1. change Symbol.iterator ⇒ "next" fallback from IsCallable to undefined/null

check

2. change existing Symbol.asyncIterator ⇒ Symbol.iterator fallback from
undefined/null check to IsCallable

a. unsure of impact on existing programs

3. leave them alone; inconsistency here is fine

Option 1
fall back on undefined/null

Example: non-callable values do not cause fallback
consider:

Iterator.from({
 [Symbol.iterator]: 0,
 next() { ... },
});

before

● Iterator.from does not consider the
passed object to be iterable

● falls back to treating it as an iterator

after

● Iterator.from considers the passed
object to be iterable

● throws when it tries to call 0 to get the
iterator

Option 1

Option 2
fall back on non-callable

Example: non-callable values cause fallback
consider:

const brokenIterable = {
 [Symbol.asyncIterator]: 0,
 [Symbol.iterator]() { ... },
};

for await (let a of brokenIterable);

before

● for-await will consider brokenIterable to
be async iterable because
Symbol.asyncIterator is not
undefined/null

● will try to call 0 to get an iterator, and it will
throw

after

● for-await will not consider brokenIterable
to be async iterable because
Symbol.asyncIterator is not callable

● will fall back to Symbol.iterator, call it,
and get an iteratorOption 2

Additional Considerations
1. async iterator helpers (stage 2) will add the async-to-sync fallback

○ Symbol.asyncIterator ⇒ Symbol.iterator ⇒ "next"
○ if we choose option 3, Symbol.asyncIterator ⇒ Symbol.iterator fallback will be inconsistent with either

■ existing Symbol.asyncIterator ⇒ Symbol.iterator fallback in GetIterator
■ the Symbol.iterator ⇒ "next" fallback added in GetIteratorFlattenable

2. this will likely set precedent for the first-class protocols proposal
3.

Champion's Opinion
● option 3 is unacceptable
● option 2 has the most desirable semantics

○ but may not be worth the risk/effort
● hope for option 2, but option 1 is also acceptable
● reminder: we're only considering how already-broken programs break

