Models Main challenges

Prof. Dr. Jan Kirenz

Poor-quality data

Data preparation

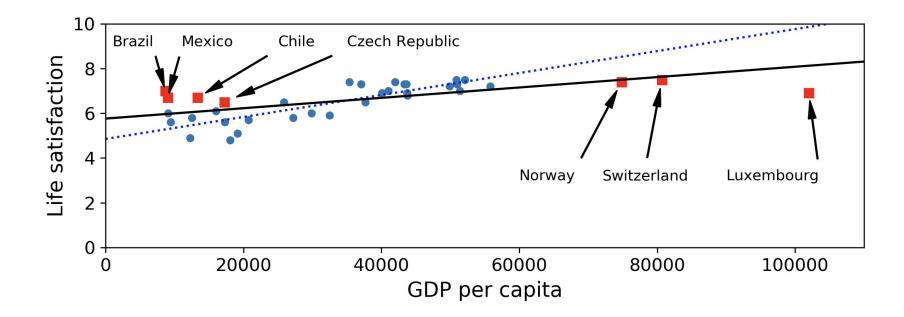
Generalization Sampling noise Sampling bias Outliers Noisy data Missing data

We want our model to generalize well

That means training data needs to be **representative**.

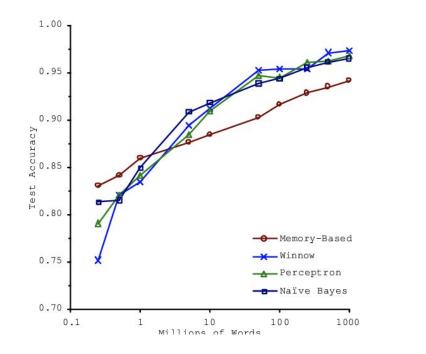
Possible issues:

- 1. dataset to small: sampling noise
- 2. sampling method flawed: sampling bias



Linear regression with a more representative data sample

Banko, M., & Brill, E. (2001). Scaling to very very large corpora for natural language disambiguation. In *Proceedings of the 39th annual meeting of the Association for Computational Linguistics* (pp. 26-33).



The Importance of data versus algorithms

Source: Géron (2019)

Poor-quality data

Data preparation:

- 1. Get rid of outliers
- 2. Check for **noise** (e.g., poor quality measurement)
- 3. Handle missing data (see Kuhn and Johnson 2019 for more information)

Irrelevant features

Feature engineering

"Applied machine learning is basically feature engineering" (Andrew Ng) Feature selection Feature extraction Feature creation

Irrelevant Features

Feature engineering:

- 1. Feature extraction (combine existing features)
- 2. Feature creation (make new features)

Additionally, we perform feature selection (select the most useful features)

≡ Q A i

Feature Engineering and Selection: A Practical Approach for Predictive Models

Max Kuhn and Kjell Johnson

2019-06-21

Preface

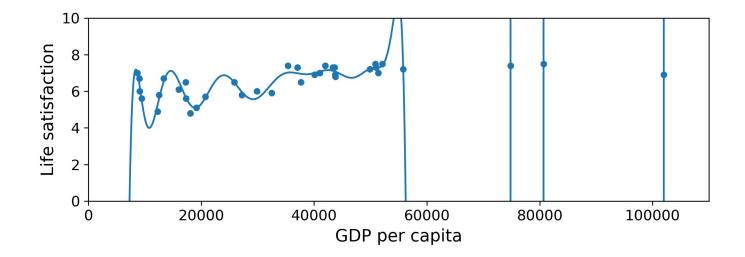
A note about this on-line text:

This book is sold by Taylor & Francis Group, who owns the copyright. We will be updating this version as we find errors or typos (see the Errata). The physical copies are sold by Amazon and Taylor & Francis.

Overfitting

Model with high variance

Regularization Hyperparameters Noise reduction



(Too) Complex model: Polynomial Linear Regression

Source: Géron (2019)

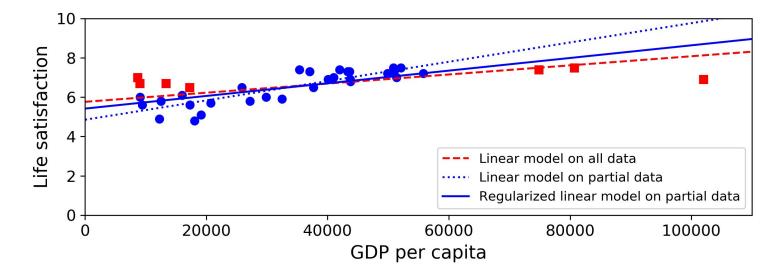
Overfitting the training data

The model performs well on the training data, but it does not generalize well

- Happens if the model is **too complex**
- Model detects patterns in the noise
- This means the variance is high

Solution 1: simplify the model

- A. Reduce number of features
- B. Use fewer parameters
- C. Constrain the model (regularization)
 - a. In linear regression, we can use **Ridge** regression, **Lasso** regression or a combination (**Elastic** net)



Regularization reduces the risk of overfitting

Source: Géron (2019)

Regularization using Ridge regression

The amount of regularization can be controlled by a hyperparameter

- A hyperparameter is a parameter of the algorithm (not of the model)
- Must be set prior to training
- Remains constant during training

$$\sum_{i=1}^{n} \left(y_i - \beta_0 - \sum_{j=1}^{p} \beta_j x_{ij} \right)^2 = \operatorname{RSS} \cdot$$

$$\sum_{i=1}^{n} \left(y_i - \beta_0 - \sum_{j=1}^{p} \beta_j x_{ij} \right)^2 + \lambda \sum_{j=1}^{p} |\beta_j| = \text{RSS} + \lambda \sum_{j=1}^{p} |\beta_j|.$$

Solution 2: reduce noise in the data

- A. Fix data errors
- B. Remove outliers

Solution 3: more data

A. Get more training data

Underfitting

Model with high bias

Bias More parameters Better features Reduce constraints

Underfitting the data: Bias

Model is too simple to learn the underlying structure of the data

- Predictions will be inaccurate
- This is called bias

1) More parameters

Select a more powerful model, with more parameters

2) Better Features

Use better features in your model (feature engineering)

Reduce the constraints on the model (e.g., reduce the regularization hyperparameter)