VDL-Surrogate: A View-Dependent Latent-based Model for Parameter Space Exploration of Ensemble Simulations (IEEE VIS’22 Best Paper Honorable Mention)
1
Scientific Achievement
Enable scientists to explore the parameter space of simulations without running the simulation from all possible simulation parameters.
Significance and Impact
A view-dependent latent representation approach to support parameter space exploration with high-resolution visualization results and user-specified visual mappings.
Comparison of the images generated using VDL-Surrogate and InSituNet for the Nyx dataset with the ground truth images for the MPAS-Ocean (left) and Nyx (right) dataset.
Technical Approach
Neng Shi, Jiayi Xu, Haoyu Li, Hanqi Guo, Jonathan Woodring, and Han-Wei Shen: VDL-Surrogate: A View-Dependent Latent-based Model for Parameter Space Exploration of Ensemble Simulations, IEEE Transactions on Visualization and Computer Graphics (Proc. IEEE VIS 2022), 229(1), 820-830, 2023. [Best Paper Honorable Mention Award at IEEE VIS 2022]