
Code First Girls Coding Challenge
By Churreesha Harden

Core:Should We Round Up The Final Grade?
Challenge: Every subject is graded from 0 to 100%. Less than 40% is failing grade and more than 80% is a distinction.

We can round up a grade:

If the difference between the grade and the next multiple of 5 is less than 3, round up to the next multiple of 5.

If the value of is less than 40, no rounding occurs as the result will still be a failing grade.

Given a input grade, round it up if appropriate and tell us if the student passed, failed or received a distinction. Write a
algorithm and produce a flow chart.

Challenge Problem #1 (Core)

Examples:

round 93% to 95%, report distinction (95 - 93 < 3)

do not round 38% , report fail (38<40)

do not round 47%, report pass (50 - 47 = 3)

Should We Round Up The Final Grade? Pseudocode
- Define a function to round up a grade and report the result

function round_grade(grade):
 - Calculate the difference between the grade and the next multiple of 5

 difference = 5 - (grade % 5)
 - If the difference is less than 3 and the grade is not less than 40, round up the grade

 if difference < 3 and grade >= 40:
 grade = grade + difference

 - If the grade is less than 40, report fail
 if grade < 40:

 report = "fail"
 - If the grade is between 40 and 80, report pass

 else if grade <= 80:
 report = "pass"

 - If the grade is more than 80, report distinction
 else:

 report = "distinction"
 - Return the rounded grade and the report

 return grade, report

-Test the function with some examples
print(round_grade(93)) # (95, 'distinction')

print(round_grade(38)) # (38, 'fail')
print(round_grade(47)) # (47, 'pass')

 Flow Chart 🌷🌷

Core: Sorting an array.🌷
Challenge:You have an array of maximum size of 100 with
DISTINCT integers. Write a algorithm and produce a flow

chart that sorts this array from smallest to largest.

EXAMPLE:

[1, 4, 5, 66, 3, 84, 11, 198]

SORTED:

[1, 3, 4, 5, 11, 66, 84, 198]

Sorting an Array Pseudocode
- Define a function that takes an array as input and sorts it using bubble sort

def bubble_sort(array):
 - Get the length of the array

 n = len(array)
 - Loop through the array n-1 times

 for i in range(n-1):
 - Loop through the array from 0 to n-i-1

 for j in range(0, n-i-1):
 - Compare the current element with the next element

 if array[j] > array[j+1]:
 - Switch them if they are out of order

 array[j], array[j+1] = array[j+1], array[j]
 - Return the sorted array

 return array

- Test the function with an example
array = [1, 4, 5, 66, 3, 84, 11, 198]

sorted_array = bubble_sort(array)
print(sorted_array) # [1, 3, 4, 5, 11, 66, 84, 198]

Flow Chart
🌷 🌷🌷

Core: Search a number in a sorted matrix. 🌷
Challenge: You are given a matrix (a list of lists) of DISTINCT integers and a target number. Each row in the matrix is

SORTED and each
column in the matrix is SORTED. Our matrix does not necessarily have the same height and width.

Write a pseudocode and produce a flowchart that:

Finds the number and report back its location (row and column indices of the target integer), if it is contained in the matrix

otherwise report back that the integer is not in the matrix.
 EXAMPLE matrix:
 matrix = [[1,4,7,12,15,1000], [2,5,19,31,32,1001], [3,8,24,33,35,1002], [40,41,42,44,45,1003],
[99,100,103,106,128,1004]]

target = 44

EXAMPLE result:

result = [3,3]

Challenge Problem #3 (Core)

Note: Indexes start at 0

Integer 1 location is [0,0], integer 4 location is [0,1] and so on. The integers are
reported as [row, column]

Search a Number in a Sorted Matrix Pseudocode 🌷
-Define a function to search a number in a sorted matrix

def search_matrix(matrix, target):
 - Loop through each row of the matrix

 for i in range(len(matrix)):
 - Initialize the left and right pointers for binary search

 left = 0
 right = len(matrix[i]) - 1

 - Repeat while left <= right
 while left <= right:

 -Calculate the middle index
 mid = (left + right) // 2

 - If the middle element is equal to the target, return its location
 if matrix[i][mid] == target:

 return [i, mid]
 - If the middle element is greater than the target, move the right pointer to the left of the middle

 elif matrix[i][mid] > target:
 right = mid - 1

 - If the middle element is less than the target, move the left pointer to the right of the middle
 else:

 left = mid + 1
 - If the target is not found in any row, return -1

 return -1

-Test the function with an
example

matrix = [
[1,4,7,12,15,1000],

[2,5,19,31,32,1001],
[3,8,24,33,35,1002],

[40,41,42,44,45,1003],
[99,100,103,106,128,1004]

]
target = 44

result = search_matrix(matrix,
target)

print(result) # [3, 3]

 Flow Chart 🌷🌷

Additional: Find factorial of n. 🌷
Challenge: The value of n will be small, less than 100. How could we use a lookup table to find the

factorial not in the table already. If you
would run the program, the first time the look up table would be empty.

Produce a pseudo code and a flowchart that allows us to find a factorial of a integer n.

EXAMPLE:

Factorial of 1 is 1! = 1.

Factorial of 2 is 2! = 1 * 2 = 2.

Factorial of 3 is 3!= 1 * 2 * 3 = 3 * 2! = 6

Factorial of 4 is 4!= 1 * 2 * 3 * 4 = 4 * 3! = 4 * 6

This gives us a general formula to find factorial: n! = n * (n-1)!

Find Factorial of n Pseudocode 🌷
- Define a function to find the factorial of n using a lookup table

def factorial(n):
 -Initialize an empty dictionary to store the factorials

 lookup = {}
 - If n is 0 or 1, return 1

 if n == 0 or n == 1:
 return 1

 - If n is in the lookup table, return its value
 if n in lookup:

 return lookup[n]
 -Otherwise, calculate the factorial recursively and store it in the lookup table

 else:
 lookup[n] = n * factorial(n - 1)

 return lookup[n]

-Test the function with some examples
print(factorial(1)) # 1
print(factorial(2)) # 2
print(factorial(3)) # 6

 print(factorial(4)) # 24

Flow Chart 🌷🌷

Additional: Hide the credit card digits. 🌷
Challenge: There are 16 digits on a credit card. Every 4 digits are separated by a space.

Start by generating a random
credit card number.

For security reasons, you are going to hide the first 12 digits on the credit card.

Example:

Randomly generated credit card number: 5486 3251 6584 7855

After hiding the first 12 digits, it would be: XXXX XXXX XXXX 7855

Produce a pseudo code and a flowchart.

Hide The Credit Card Digits Pseudocode
-Import the random module
import random

- Define a function to generate a random credit card number
def generate_card():

 - Initialize an empty string to store the number
 number = ""

 - Loop 4 times
 for i in range(4):

 - Generate a random 4-digit number and convert it to a string
 digits = str(random.randint(1000, 9999))

 - Append the digits and a space to the number string
 number = number + digits + " "

 - Return the number string without the trailing space
 return number.strip()

- Define a function to hide the first 12 digits of a credit card number
def hide_card(number):

 -Split the number string by spaces and store it in a list
 parts = number.split()

 - Loop through the first 3 elements of the list
 for i in range(3):

 - Replace each element with "XXXX"
 parts[i] = "XXXX"

 - Join the list elements with spaces and return the result
 return " ".join(parts)

- Test the functions with an example
card = generate_card()

print(card) # For example: 5486 3251 6584 7855
hidden = hide_card(card)

print(hidden) # XXXX XXXX XXXX 7855

Flow Chart
🌷🌷

FIN.
 Thank You! 😊💞

