Progress Review 3

Team A: Mind The Gap

Agenda

- 1. Subsystem Updates
 - a. Coupling Electro-Mechanical System
 - b. Low Level Controller and Simulation Environment
 - c. Planner
 - d. Task Allocator
- 2. Risk Mitigation
- 3. Subsystem Demonstration Collision-Free Paths on hardware
- 4. Subsystem Demonstration Coupling and locking mechanisms

Coupling Mechanism

- Prototyped the 2nd agent
- Tested the coupling sequence manually
- Conducted coupling load tests

Low-level Controller and Simulation Environment

- Implemented PID controller and time synchronization (Waiting for slowest) to avoid collisions
- Implemented interactive marker based Rviz stuff for ease of experimentation

Planning

Work done for PR3:

- Replaced low level A* search with Theta * planner with time and space constraints
- Added time synchronization based on robot kinematics to avoid collisions in CBS
- Integrated and ran single and multi-agent planners on Khepera

New Challenges Identified:

- Time synchronization based on linear kinematics differs from controller output (PID)
- Collision boundary boxes are not consistent across runs
- Runs very slow due to small time discretization

Goals for PR 4:

- Improve performance and avoid collisions 75% of the time
- Integrate with gap-aware task allocator
- Test on hardware, preparing for SVD

Fig 1: A* Path for single agent

Fig 2: Theta* Path for single agent

Task Allocation

Work done for PR 3:

- Re-implemented task allocator using Google OR tools for many-to-one tasks-robot.
- Hierarchical task allocator models POI exploration as a vehicle routing problem (VRP)
- The best point of gap crossing is determined for a gap of a fixed size, relative to the location of the last POI allocated for that agent
- A coalition of robots is allocated for the gap crossing task
- The gap crossing task is added to the task lists of selected agents.

Challenges:

- Output must be configured for the planner
- Handling various gap locations/configurations.

Goals for PR 4:

• Integrate and test task allocator with all other subsystems

Route lengths
Task lists
[[0, 100], [0, 5, 2, 6, 7, 4, 3], [0, 1, 100], [0, 100]]
(100 is the gap crossing task)

Risk summary - Current Risks

Risk Title: Khepera on-board GPIO not working	Risk Owner: Sankalp
Risk Title: Unexpected interference of mechanism or enclosure with Khepera sensors (cameras/IR)	Risk Owner: Sankalp
Risk Title: Enclosure Breaks During Testing	Risk Owner: Sankalp
Risk Title: Suitable voltage and current to each components with a battery and the designed PDB	Risk Owner: Sudhansh / Sankalp
Risk Title: Proposed SVD setup might be unsuitable	Risk Owner: Dhanvi