Recent Developments in Sign Language Processing towards realistic sign language machine translation

Zifan Jiang 2024.02.20 Zurich

## Who am I?

#### Zifan (子凡) [tsរ³ fan²] Jiang (蒋) [tɕjɑŋ³]

- PhD student at University of Zurich
- Funded by the <u>IICT project</u>
- Computer/data scientist & Web developer
- Computational linguist



# (Goal?) of Existing Sign Language Works

| Google | How to sign "hello" in asl?                   | x 🌷 Q            |
|--------|-----------------------------------------------|------------------|
|        | 🔍 All 🗈 Videos 🖾 Images 🏾 Books 💷 News 🗄 More | Settings Tools   |
|        | About 623,000,000 results (0.46 seconds)      |                  |
|        | English – detected 🗸 🚑 American Sign          | Language (ASL) 👻 |
|        | Hello ×                                       |                  |
|        |                                               |                  |
|        |                                               |                  |
|        |                                               |                  |
|        |                                               |                  |

Open in Google Translate

Feedback

#### Recap: my first work

#### Machine Translation between Spoken Languages and Signed Languages Represented in SignWriting

| 🛞 Sign Translate    |         |        |         |   |            |    |
|---------------------|---------|--------|---------|---|------------|----|
| ズ <sub>A</sub> Text |         |        |         |   |            |    |
| DETECT LANGUAGE     | ENGLISH | FRENCH | SPANISH | ~ |            | ←→ |
| hi                  |         |        |         |   | *          |    |
|                     |         |        |         |   | <b>-</b> ‡ |    |
| https://sign.mt/    |         |        |         |   |            |    |





Zifan Jiang, Amit Moryossef, Mathias Müller, Sarah Ebling Department of Computational Linguistics



May 2023 @ EACL & LoResMT

# Outline

- WMT shared task on sign language translation
- Data for sign language processing
- Methodology for sign language processing
  - Segmentation
  - Alignment
  - Representation
- (interlude) Sign language processing 2024 and future
  - In the era of LLMs and deep pretrained models

#### WMT shared task on sign language translation

B WMT-SLT

Home Motivation Schedule Participate Data Tools Calls Organizers FAQ Previous Versions



#### News

| 01/08/2023 | Participation instructions are now live.                |  |
|------------|---------------------------------------------------------|--|
| 28/07/2023 | Our test set can now be <u>downloaded</u> .             |  |
| 26/06/2023 | We shifted our remaining deadlines by two weeks, to     |  |
|            | give participants more time. See updated schedule.      |  |
| 22/06/2023 | Our training data SRF can now be downloaded.            |  |
| 06/06/2023 | Our training data Signsuisse can now be downloaded.     |  |
| 16/05/2023 | Delayed release of training data for one more week      |  |
| 02/05/2023 | Schedule is updated due to delays in data preparation.  |  |
| 22/03/2023 | 2023 Website is up. Last year's site can be found here. |  |
|            |                                                         |  |

#### https://www.wmt-slt.com/

#### WMT shared task on sign language translation

| all  |        |                |  |
|------|--------|----------------|--|
| Rank | Ave.   | System         |  |
| 1    | 87.051 | HUMAN          |  |
| 2-3  | 2.075  | MSMUNICH       |  |
| 2-3  | 2.008  | SLATTIC        |  |
| 4-5  | 0.520  | UZH (baseline) |  |
| 4-8  | 0.437  | DFKI-MLT       |  |
| 5-8  | 0.339  | DFKI-SLT       |  |
| 5-8  | 0.207  | UPC            |  |
| 5-8  | 0.041  | NJUPT-MTT      |  |

| both domains |        |          |  |
|--------------|--------|----------|--|
| Rank         | Ave.   | System   |  |
| 1            | 83.829 | HUMAN    |  |
| 2            | 0.669  | TTIC     |  |
| 3-5          | 0.024  | CASIA    |  |
| 3-5          | 0.008  | BASELINE |  |
| 3-5          | 0.005  | KNOWCOMP |  |

2022 edition

2023 edition

# What's wrong?

#### • Data

- Number of parallel examples: 10k << 1m
- Quality: alignment, parallel vs. *comparable* data (>> 10k)

#### • Methodology

- Transformers + ?
- Tokenization/segmentation

|                                                                     | SRF training data 22     | SRF training data 23  |  |
|---------------------------------------------------------------------|--------------------------|-----------------------|--|
| lumber of episodes                                                  | 29                       | 771                   |  |
| ime span of episodes                                                | March 2020 to March 2021 | July 2014 to May 2021 |  |
| otal duration videos                                                | 16 hours                 | 437 hours             |  |
| Total number of subtitles<br>before/after sentence<br>segmentation) | 14265 / 7071             | 354901 / 231834       |  |
| lumber of signers                                                   | 3                        | 4                     |  |

#### Data

Swiss TV broadcast data

- <u>https://www.wmt-slt.com/data</u>
- https://sites.google.com/view/wmt-slt-v2022/data?authuser=0

The Signsuisse Lexicon

• <u>https://www.sgb-fss.ch/signsuisse/</u>

SwissSLi: the Multi-parallel Sign Language Corpus for Switzerland

• Under review @lrec-coling-2024

# Methodology

More basic tools

- Segmentation
- Alignment
- Representation

## Linguistically Motivated Sign Language Segmentation

- Phrase-level
- Sign-level



#### @EMNLP2023

#### Linguistically Motivated Sign Language Segmentation

Labelling Strategy: 0/1 vs. BIO Tagging



Per-frame classification of a sign language utterance following a BIO tagging scheme

#### **Boundary of Phrases**



Optical flow of a conversation between two signers in the Public DGS Corpus

# Boundary of Signs



Number of hand shapes per sign in SignBank

#### **3D Hand Normalization**



Figure 14: Visualizations of 10 hand shapes, each with 48 crops overlayed.

#### Segmentation + (isolated) recognition = translation?

- <u>https://colab.research.google.com/drive/1CKIXVI3vP0NKZDZZ\_I-Qb\_wSHt2c</u> w4VT#scrollTo=u3NuOl9PYx7h
- Limitation of glosses: word order, information loss ->

Considerations for meaningful sign language machine translation based on glosses

Mathias Müller<sup>1</sup>, Zifan Jiang<sup>1</sup>, Amit Moryossef<sup>1,2</sup>, Annette Rios<sup>1</sup> and Sarah Ebling<sup>1</sup> <sup>1</sup> Department of Computational Linguistics, University of Zurich, Switzerland <sup>2</sup> Bar-Ilan University, Israel

{mmueller,jiang,rios,ebling}@cl.uzh.ch,amitmoryossef@gmail.com

#### Abstract

Automatic sign language processing is gaining popularity in Natural Language Processing (NLP) research (Yin et al., 2021). In machine translation (MT) in particular, sign language translation based on *glosses* is a prominent approach. In this paper, we review recent works on neural gloss translation. We find that limitations of glosses in general and limitations of specific datasets are not discussed in a transGlosses (DSGS) KINDER FREUEN WARUM FERIEN NÄHER-KOMMEN

Translation (DE) Die Kinder freuen sich, weil die Ferien näher rücken.

@ACL2023

Glosses (EN) ('CHILDREN REJOICE WHY HOLIDAYS APPROACHING')

Translation (EN)
('The children are happy because the holidays
are approaching.')

# Methodology

More basic tools

- Segmentation
- Alignment
- Representation

### Alignment



Die Kinder freuen sich, weil die Ferien näher rücken.

time

https://www.wmt-slt.com/data

# Alignment



https://www.robots.ox.ac.uk/~vgg/research/bslalign/

# (interlude) Sign Language Processing 2024 In the era of LLMs and deep pretrained models

## Self-supervised deep pretrained models (on huge data)

- Text: BERT, GPT, etc.
- Image: masked autoencoders (MAE)
  - based on ViT
- Speech: wav2vec 2.0
  - Quantization
- Video: InternVideo
  - Too expensive to train?



### Weak supervision from text - CLIP



*Figure 1.* Summary of our approach. While standard image models jointly train an image feature extractor and a linear classifier to predict some label, CLIP jointly trains an image encoder and a text encoder to predict the correct pairings of a batch of (image, text) training examples. At test time the learned text encoder synthesizes a zero-shot linear classifier by embedding the names or descriptions of the target dataset's classes.

# SignCLIP: our solution to alignment (sign language to text)

- Adapted from a VideoCLIP model
- Data scale
  - HowTo100M videos (duration of each is ~6.5 minutes with ~110 clip-text pairs)
  - Now collecting a few hundred thousand isolated ASL sign examples
  - Spreadthesign: 600k
- Data representation
  - 10-second video
  - Dimension reduction
  - Spatial vs. temporal

#### - Usage

- Language identification
- Recognition/retrieval
- Segmentation/alignment
- Glossed-based translation
- Quality estimation

| Encoder                       | Temporal dim. | Spatial dim. |
|-------------------------------|---------------|--------------|
| Original video                | 10x30         | 640×480x3    |
| S3D (pretrained on HowTo100M) | 10            | 512          |
| I3D (pretrained on BSL)       | 10            | 1024         |
| MediaPipe Holistic            | 10x30         | 543          |
| SignVQNet                     | 10            | 1024         |

# Methodology

More basic tools

- Segmentation
- Alignment
- Representation

#### **Representations of Signed Languages**



https://research.sign.mt/

### **Representations of Signed Languages**

Language Agnostic Tasks

Language Specific Tasks



https://research.sign.mt/

## <u>SignVQ</u>: our solution to representation

Existing work

- [Autoregressive Sign Language Production: a Gloss-Free Approach with Discrete Representations](<u>http://nlpcl.kaist.ac.kr/~projects/signvqnet</u>)
- [SignAvatars: A Large-scale 3D Sign Language Holistic Motion Dataset and Benchmark](<u>https://signavatars.github.io/</u>)
- Lee's new work: Learning Sub-Lexical Components to Represent Sign Language

Ours

- Sign MediaPipe VQ

### MotionGPT



