1 of 9

DYNAMICS - Lecture Notes / Mehmet Zor

1

23 Agust, 2024

1.2.5 Curvilinear Motion in Polar Coordinates :

we will determine the position, velocity and acceleration of an object moving curvilinearly on a plane according to the polar coordinates r - θ, at a time t

At the examined time t, (at point P):

  • r and θ axes are placed at point P.

 

 

 

 

 

 

 

 

 

 

1.2.5 Kinematics of Particle / Curvilinear Motion / Polar Components

  • + r axis is in direction of OP.
  • The +θ axis is obtained by rotating the r axis 900 counterclockwise.
  • According to the right hand rule, we rotate the +x axis to the +y axis with the 4 fingers of our right hand and close it. This rotation direction is the +q direction and in this case our thumb points to the +z direction perpendicular to the plane.

Figure 1.2.23

Figure 1.2.22

2 of 9

DYNAMICS - Lecture Notes / Mehmet Zor

2

23 Agust, 2024

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1.2.5 Kinematics of Particle / Curvilinear Motion / Polar Components

 

 

 

 

 

 

 

dθ

 

 

 

 

θ

First, we will derive the relationships between the unit vectors on the r and θ axes:

dθ

 

 

 

When we move from position P by the angle dq, we come to position P’. Unit vectors at position P’:

 

 

magnitudes of unit vectors are 1:

 

Magnitude of diff. unit vectors:

(We liken it to the equation radius x central angle = arc length.)

 

 

 

 

 

 

 

//

 

 

 

 

 

 

 

//

 

 

 

 

 

 

 

Position at time t :

instantaneous velocity vector :

 

 

 

 

 

Since

 

 

instantaneous acceleration vector :

 

 

 

 

 

 

 

instantaneous

acceleration components:

 

 

instantaneous velocity components :

(1.27)

(1.28)

(1.29)

(1.30)

Figure 1.2.24

Figure 1.2.25

 

3 of 9

DYNAMICS - Lecture Notes / Mehmet Zor

3

23 Agust, 2024

Example 1.2.6

On a sufficiently long arm AC, the ring B slides freely. The position of the ring B at time t is described by the equations

r = 2t2 -2t +20, θ = 0.2t2

Accordingly, calculate the velocity and acceleration of the ring when θ = 120o

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Solution:

r = 2t2 -2t +20

θ = 0.2t2

 

 

 

 

 

 

 

 

 

1.2.5 Kinematics of Particle / Curvilinear Motion / Polar Components

(from equations 1.27-1.30)

 

 

 

r

Figure 1.2.26

Figure 1.2.27

4 of 9

DYNAMICS - Lecture Notes / Mehmet Zor

4

23 Agust, 2024

Question 1.2.3 (*)

 

 

 

 

1.2.5 Kinematics of Particle / Curvilinear Motion / Polar Components

Figure 1.2.28

5 of 9

DYNAMICS - Lecture Notes / Mehmet Zor

5

23 Agust, 2024

Example 1.2.7

 

x

y

8.66km

θ

r

 

 

 

 

 

 

 

 

 

 

 

 

 

 

r

 

 

 

 

 

 

 

Valid for rectilinear motion with constant acceleration.

Timeless Velocity Equation (1.9):

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Solution:

1.2.5 Kinematics of Particle / Curvilinear Motion / Polar Components

 

 

 

8.66km

 

Figure 1.2.29

Figure 1.2.30

angular accelaration

6 of 9

DYNAMICS - Lecture Notes / Mehmet Zor

6

23 Agust, 2024

Example 1.2.8

1.2.5 Kinematics of Particle / Curvilinear Motion / Polar Components

 

 

 

 

 

 

 

Remzi

Solution:…>>>

 

Figure 1.2.31

7 of 9

DYNAMICS - Lecture Notes / Mehmet Zor

7

23 Agust, 2024

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

x

t=0

t=5s

 

:constant

y

 

Velocity components of the bullet at time t= 0 (oblique shot)

The bullet starts moving with the speed of the car + its own speed:

 

 

 

 

 

 

 

 

 

the bullet is in the rise zone.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.2.32

1.2.5 Kinematics of Particle / Curvilinear Motion / Polar Components

8 of 9

DYNAMICS - Lecture Notes / Mehmet Zor

8

23 Agust, 2024

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Question 1.2.4 (*)

1.2.5 Kinematics of Particle / Curvilinear Motion / Polar Components

 

 

 

a-)

Answers:

b-) 6369.8m

Figure 1.2.33

9 of 9

DYNAMICS - Lecture Notes / Mehmet Zor

9

23 Agust, 2024

 

 

 

 

 

 

Question1.2.5 (*)

A

1.2.5 Kinematics of Particle / Curvilinear Motion / Polar Components

Hasan

Figure 1.2.34