

slido

Join at slido.com #1039867

Click **Present with Slido** or install our <u>Chrome extension</u> to display joining instructions for participants while presenting.

Principal Component Analysis I

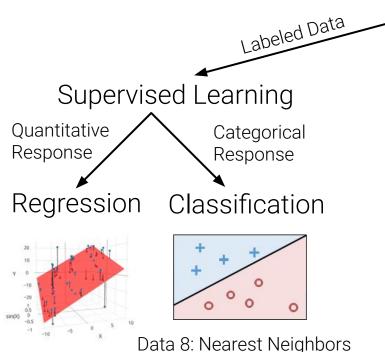
A New Tool for EDA using Singular Value Decomposition

Data 100/Data 200, Spring 2024 @ UC Berkeley

Narges Norouzi and Joseph E. Gonzalez

Content credit: Acknowledgments

Taxonomy of Machine Learning



Data 8: Nearest Neighbors Earlier: Logistic Regression In "Supervised Learning":

Goal is to create a function that maps inputs to outputs.

- Model is learned from example input and output pairs. Each pair consists of:
 - Input vector (features)
 - Output value (label).
- **Regression**: Output value is quantitative.
- **Classification**: Output value is categorical.

Taxonomy of Machine Learning

Unsupervised Learning

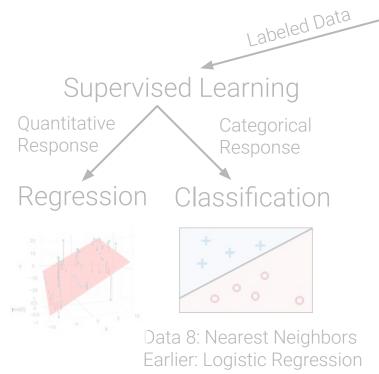
In "Unsupervised Learning":

Goal is to identify patterns in **unlabeled** data.

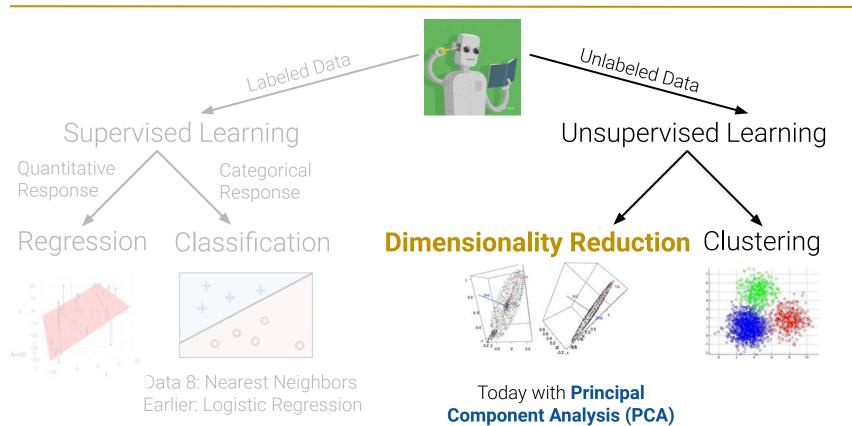
• We have **features** but **no labels**

Unlabeled Data

• Sometimes we may have labels, but we choose to ignore them.

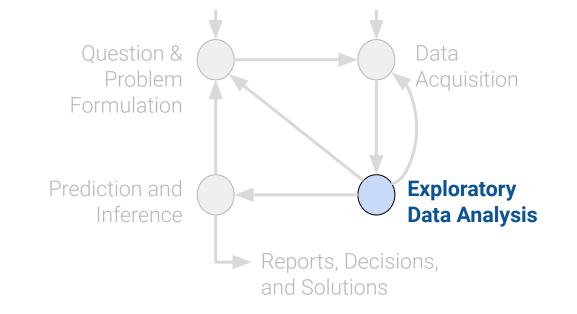


Taxonomy of Machine Learning



Infer Quantitative Labels

PCA: A Technique for High Dimensional EDA and Featurization



SVD PCA

today

Principal Component Analysis (PCA) is a linear technique for dimensionality reduction.

PCA relies on a linear algebra algorithm called **Singular Value Decomposition**.

Today's Roadmap

Lecture 24, Data 100 Spring 2024

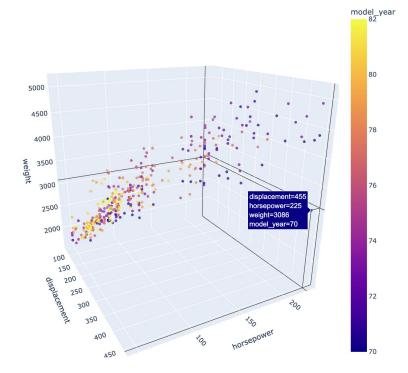
Visualization Revisited Dimensionality Principal Component Analysis Matrix as Transformation Singular Value Decomposition PCA with SVD Data Variance and Centering

Visualization Revisited

Lecture 24, Data 100 Spring 2024

Visualization Revisited

Dimensionality Principal Component Analysis Matrix as Transformation Singular Value Decomposition PCA with SVD Data Variance and Centering



Demo (MPG Visualization)

Visualizing Gene Data

1039867

Visualization can help us identify clusters in our dataset.

		1		
	Gene 1	Gene 2	Gene 3	Gene 4
0	10	6.0	12.0	5
1	11	4.0	9.0	7
2	8	5.0	10.0	6
3	3	3.0	2.5	2
4	2	2.8	1.3	4
5	1	1.0	2.0	7

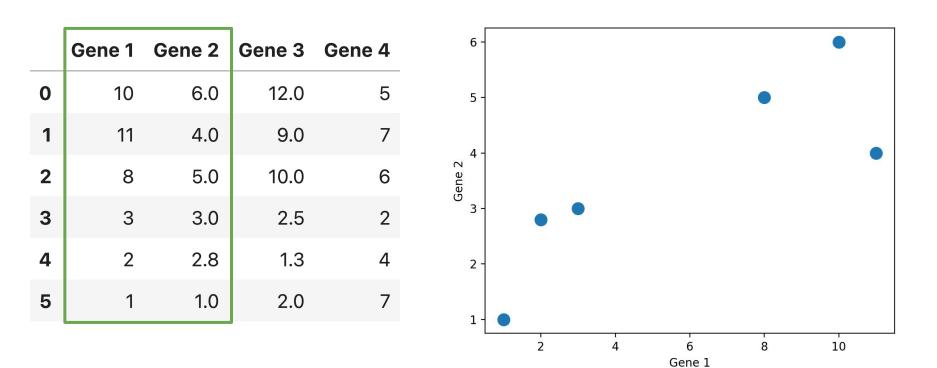
Gene 1

Visualizing Gene Data

@0\$0

1039867

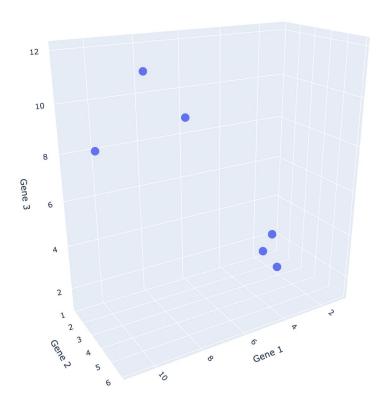
Visualization can help us identify clusters in our dataset.



Visualizing Gene Data

Visualization can help us identify clusters in our dataset.

	Gene 1	Gene 2	Gene 3	Gene 4	
0	10	6.0	12.0	5	
1	11	4.0	9.0	7	
2	8	5.0	10.0	6	
3	3	3.0	2.5	2	
4	2	2.8	1.3	4	
5	1	1.0	2.0	7	



Visuali	zing	Gene	Data
---------	------	------	------

Since we are all 3D beings, we can't visualize beyond three dimensions! However, many datasets come with more than three features. What can we do?

	Gene 1	Gene 2	Gene 3	Gene 4
0	10	6.0	12.0	5
1	11	4.0	9.0	7
2	8	5.0	10.0	6
3	3	3.0	2.5	2
4	2	2.8	1.3	4
5	1	1.0	2.0	7

We reduce the dataset to lower dimensions → **Dimensionality** reduction

Dimensionality

Lecture 24, Data 100 Spring 2024

Visualization Revisited

Dimensionality

Principal Component Analysis Matrix as Transformation Singular Value Decomposition PCA with SVD Data Variance and Centering

Suppose we have a dataset of:

- **N** observations (datapoints)
- **d** attributes (features).

In Linear Algebra:

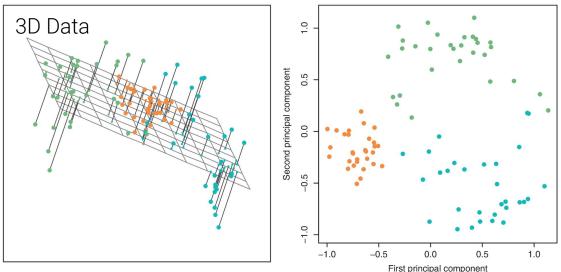
- N points/row vectors in a d-D space, OR
- **d** column vectors in an **N**-D space.

Intrinsic Dimension of a dataset is the **minimal set of dimensions** needed to approximately represent the data.

Example:

- 3D Dataset
- Mostly describe by position on the 2D-plane.

Intrinsic Dimension = 2



Suppose we have a dataset of:

- **N** observations (datapoints)
- **d** attributes (features).

In Linear Algebra:

- N points/row vectors in a d-D space, OR
- **d** column vectors in an **N**-D space.

Intrinsic Dimension of a dataset is the **minimal set of dimensions** needed to approximately represent the data.

Example:

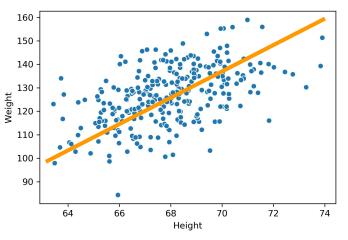
• "Somewhat" described by position on the 1D-plane (line)

dimension of the column space

of A is the **rank** of matrix A.

Example: 2 dimensions

Height (in)	Weight (Ibs)	
65.8	113.0	
71.5	136.5	
69.4	153.0	



Suppose we have a dataset of:

- **N** observations (datapoints)
- **d** attributes (features).

In Linear Algebra:

- N points/row vectors in a d-D space, OR
- **d** column vectors in an **N**-D space.

Dimension of the column space of A is the **rank** of matrix A.

Height (in)	Weight (lbs)
65.8	113.0
71.5	136.5
69.4	153.0

2 dimensions

Height (in)Weight (lbs)Age65.8113.01771.5136.52169.4153.018

Α.

Β.

Consider the datasets shown.

What would you call the columns space of these datasets.

- 1-dimensional, C. 3-dimensional
 - 2-dimensional, **D.** Something else

Weight (Ibs)	Weight (kg)
113.0	51.3
136.5	61.9
153.0	69.4

Dataset 3

Weight (kg)	Weight (lbs)	Age
51.3	113.0	17
61.9	136.5	21
69.4	153.0	18
	51.3 61.9	51.3 113.0 61.9 136.5

Dataset 4

() Start presenting to display the poll results on this slide.

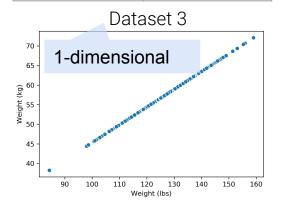
Dimensionality of Data?

Consider the datasets shown.

What would you call these datasets?

- A. 1-dimensional, C. 3-dimensional
- **B.** 2-dimensional, **D.** Something else

Weight (lbs)	Weight (kg)
113.0	51.3
136.5	61.9
153.0	69.4



@000

Height (in)	Weight (kg)	Weight (lbs)	Age
65.8	51.3	113.0	17
71.5	61.9	136.5	21
69.4	69.4	153.0	18

Dataset 4

Dimensionality of Data?

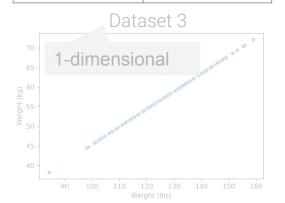
Consider the datasets shown.

What would you call these datasets?

Β.

- A. 1-dimensional, C. 3-dimensional
 - 2-dimensional, **D.** Something else

Weight (lbs)	Weight (kg)
113.0	51.3
136.5	61.9
153.0	69.4



0

Height (in)	Weight (kg)	Weight (lbs)	Age
65.8	51.3	113.0	17
71.5	61.9	136.5	21
69.4	69.4	153.0	18
1	<u> </u>	·	

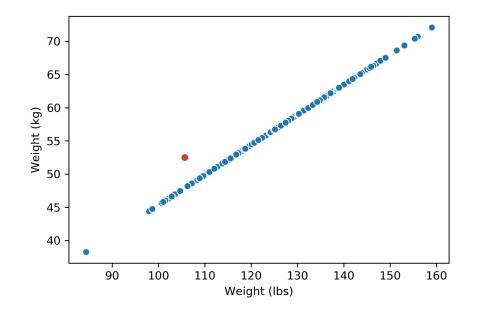
Dataset 4

- **3-dimensional**, because two weight columns are redundant.
- Notice: Matrix of dataset has (column) rank 3!

Dimensionality - what does it mean ...?

Note that in the dataset below, I've added one **outlier** point to Dataset 3

- Just this one outlier is enough to change the **rank** of the matrix to 2.
- But the data is still *approximately* 1-dimensional!



Intrinsic Dimension of a dataset is the **minimal set of dimensions** needed to approximately represent the data.

Dimensionality reduction is generally an **approximation of the original data**. This is achieved through matrix factorization.

Matrix **Decomposition** (Factorization)

Lecture 24, Data 100 Spring 2024

Unsupervised Learning Dimensionality: The Intuition Principal Component Analysis

Matrix Decomposition (Factorization)

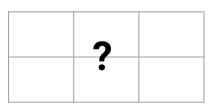
Singular Value Decomposition PCA with SVD PCA Demo: World Data Centering Data and Computing Variance

 \approx

Ori	Original Dataset					
Age (days)	Height (in)	Height (ft)				
182	28	2.33				
399	30	2.5				
725	33	2.75				
630	31	2.58				
124	24	2				

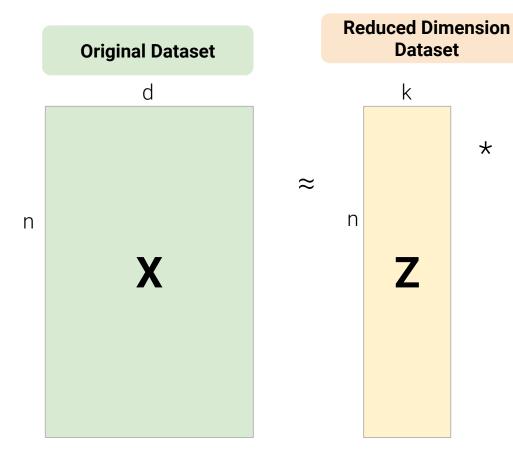
Reduced Dimension Dataset

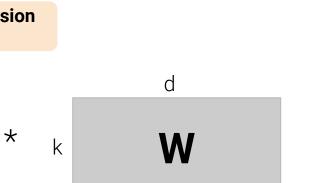
Age (days)	Height (in)
182	28
399	30
725	33
630	31
124	24



*

One **linear** technique to dimensionality reduction is via **matrix decomposition**, which is closely tied to **matrix multiplication**.

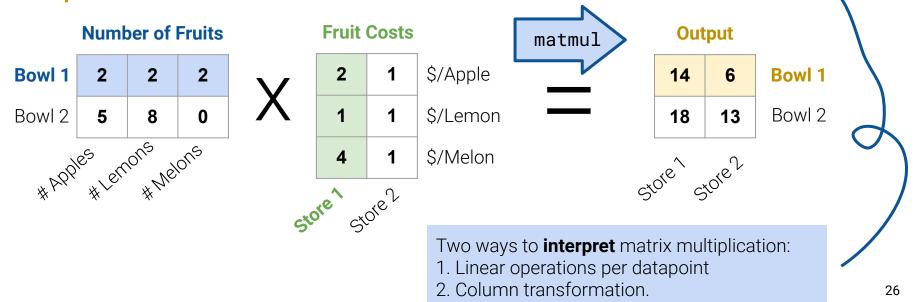


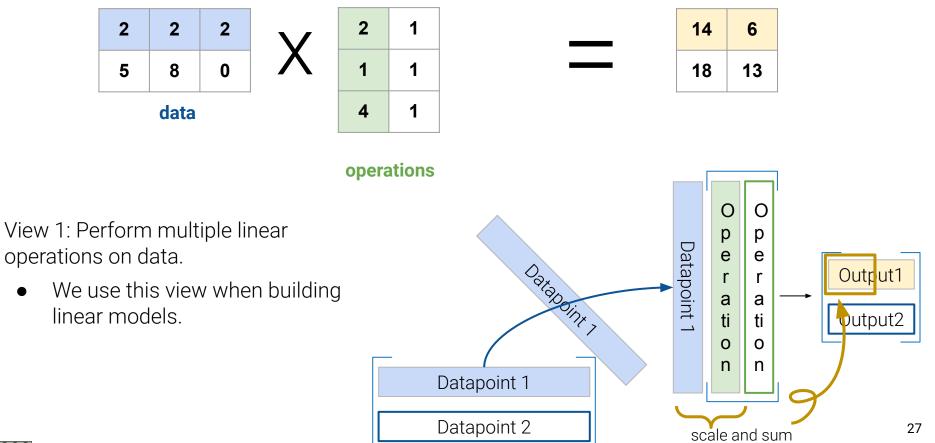


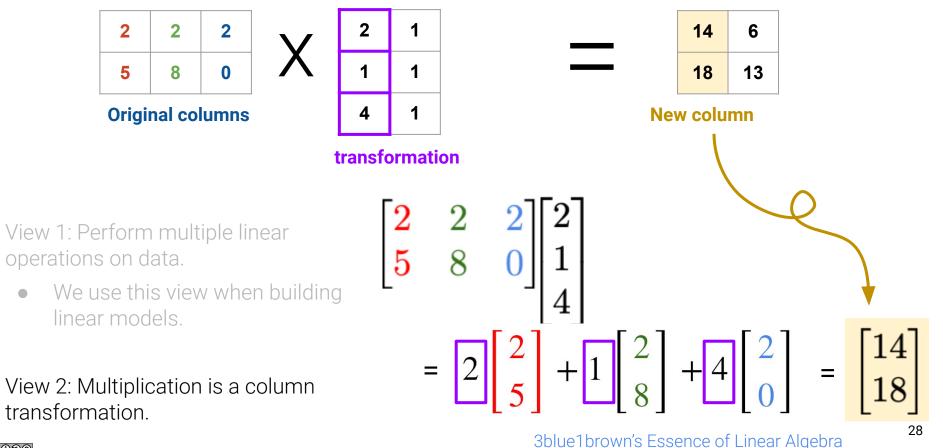
Today we will develop a procedure to decompose our data matrix X into a lower dimensions matrix Z that when multiplied by W approximately recovers the original data.

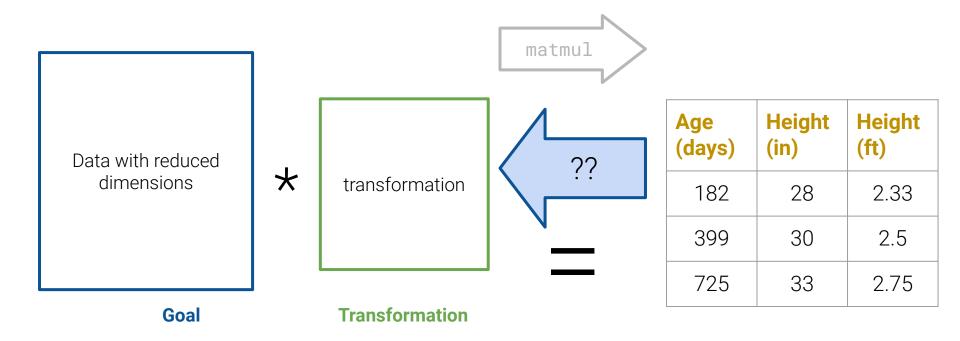
Consider the matrix multiplication example below.

- Each row of the fruits matrix represents one bowl of fruit.
 - First bowl: 2 apples, 2 lemons, 2 melons.
- Each column of the dollars matrix represents the cost of fruit at a store.
 - First store: 2 dollars for an apple, 1 dollar for a lemon, 4 dollars for a melon.
- Output is the cost of each bowl at each store.



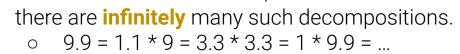






Matrix decomposition (a.k.a. Matrix Factorization) is the opposite of matrix multiplication, i.e. taking a matrix and decomposing it into two separate matrices.

• Just like with real numbers,



• Matrix sizes aren't even unique...

Some	example f	actorizatio	ons:					Age	Height	Height
	182	28			0	0	1	(days)	(in)	(ft)
3x2	399	30	*		0	0	2x3	182	28	2.33
JXZ	725	33		0	1	1/12				
l	Age	Height						399	30	2.5
	, (90	(in)						725	33	2.75
	G	ioal		Transf	ormatio	n			1	1

Matrix Decomposition: Infinite Ways

Matrix decomposition (a.k.a. Matrix Factorization) is the opposite of matrix multiplication, i.e. taking a matrix and decomposing it into two separate matrices.

Just like with real numbers,

there are **infinitely** many such decompositions. 9.9 = 1.1 * 9 = 3.3 * 3.3 = 1 * 9.9 = ...

• Matrix sizes aren't even unique...

	182	28]
00	399	30]	0		0	2x3
3x2	725	33		0	1		1/12	2/10
				1			Ì	1
	182	28	2.33		1	0	0	
3x3	399	30	2.5	X	0	1	0	3x3
	725	33	2.75		0	0	1	

Age (days)	Height (in)	Height (ft)
182	28	2.33
399	30	2.5
725	33	2.75

What are possible matrix factorizations? Select all that apply. A. $(3x2) \times (2x3)$ C. $(3x1) \times (1x3)$ E. Something else B. $(3x3) \times (3x3)$ D. $(3x4) \times (4x3)$

slido

What are possible matrix factorizations? Select all that apply.

Click **Present with Slido** or install our <u>Chrome extension</u> to activate this poll while presenting.

Matrix Decomposition: Limited by Rank

	182	28	2.33	0	
3x4	399	30	2.5	0	
	725	33	2.75	0	
^ \\					

Fine, but defeats the point of dimension **reduction**...

	1	0	0	
/	0	1	0	4.0
	0	0	1	4x3
	99	31	17	

Age (days)	Height (in)	Height (ft)
182	28	2.33
399	30	2.5
725	33	2.75

What are possible matrix factorizations? Select all that apply. $(3x2) \times (2x3)$ C. $(3x1) \times (1x3)$ Something else $(3x3) \times (3x3)$ (3x3) $(3x4) \times (4x3)$

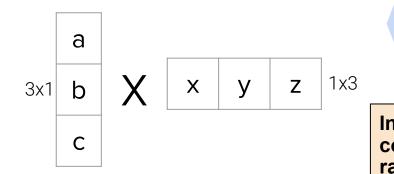
Matrix Decomposition: Limited by Rank

	182	28	2.33	0	
3x4	399	30	2.5	0	
	725	33	2.75	0	

Fine, but defeats the point of dimension reduction ...

Impossible, because rank of original > 1!

ax/bx = a/b = 182/399ay/by = a/b = 28/30**Contradiction!**



99

 $\left(\right)$

1

17

 $\left(\right)$

31

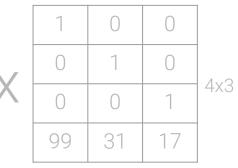
4x3

What are possible matrix factorizations? Select all that apply. $(3x2) \times (2x3)$ $(3x1) \times (1x3)$ Something else $(3x4) \times (4x3)$ (3x3) x (3x3)

	Age (days)	Height (in)	Heigh (ft)	nt		
	182	28	2.33	}		
	399	30	2.5			
	725	22	<u>27</u> 4	5		
constr	In practice we usually construct decompositions < rank of the original matrix!					
They provide approximate reconstructions of the original matrix. ³⁴						

Matrix Decomposition: Limited by Rank

	182	28	2.33	0	
3x4	399	30	2.5	0	
	725	33	2.75	0	

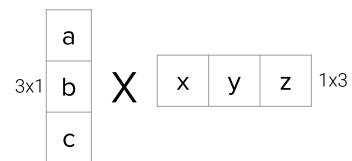


Fine, but defeats the point of dimension **reduction**...

Impossible, because rank of original > 1!

ax/bx = a/b = 182/399 ay/by = a/b = 28/30 **Contradiction!**

 $\Theta \odot \odot \odot$



AgeHeightHeightIn practice we usually
construct decompositions <
rank of the original matrix!3They provide approximate
reconstructions of the original
matrix.5

How do we **automatically** choose a reasonable matrix decomposition?

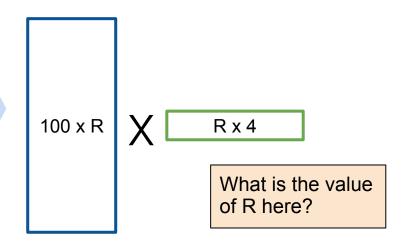
What are possible matrix factorizations? Select all that apply. $(3x2) \times (2x3) \times (3x1) \times (1x3) \times Something else$ $(3x3) \times (3x3) \times (3x4) \times (4x3)$

Possible goal: Find a procedure to **automatically** factorize a rank R matrix into an R dimensional representation times some transformation matrix.

- Lower dimensional representation avoids redundant features.
- Imagine a 1000 dimensional dataset: If the rank is only 5, it's much easier to do EDA after this mystery procedure.

100 x 4

width	length	area	perimeter		
20	20	400	80		
16	12	192	56		
24	12	288	72		



1039867

Possible goal: Find a procedure to **automatically** factorize a rank R matrix into an R dimensional representation times some transformation matrix.

- Lower dimensional representation avoids redundant features.
- Imagine a 1000 dimensional dataset: If the rank is only 5, it's much easier to do EDA after this mystery procedure.

What if we wanted a 2-D representation?

• Rank of the 4D matrix is 3, so we can no longer exactly reconstruct the 4-D matrix.

Still, some 2D matrices yield **better approximations** than others. **How well can we do?** 100 x 4

width	length	area	perimeter	100 x 2				
20	20	400	80			2 x 4		 7
16	12	192	56		X			_
24	12	288	72		-			37

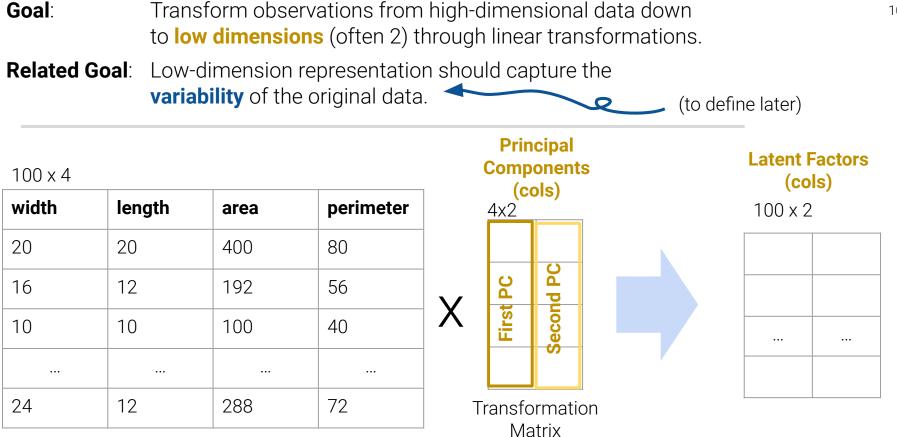
Principal Component Analysis

Lecture 24, Data 100 Spring 2024

Unsupervised Learning Dimensionality: The Intuition Matrix Decomposition (Factorization) **Principal Component Analysis** Singular Value Decomposition PCA with SVD Centering Data and Computing Variance

Principal Component Analysis (PCA)

1039867



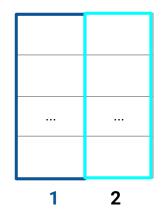
Why perform PCA?

- Goal:Transform observations from high-dimensional data down
to low dimensions (often 2) through linear transformations.
- **Related Goal**: Low-dimension representation should capture the **variability** of the original data.

Exploratory Data Analysis:

- Visually identify clusters of similar observations in high dimensions.
- You have reason to believe the **data are inherently low rank,** e.g., There are many attributes but only a few mostly determine the rest through linear associations.
- Some modeling techniques **benefit from decorrelated features**
 - PCA will eliminate correlations between features.

Often work with Latent Factors 100 x 2



Why two dimensions?

• Most visualizations are 2-D! Choose the two axes on which to plot datapoints.

There are two equivalent ways to frame PCA:

- 1. Finding the directions of **maximum variability** in the data
- 2. Finding the low dimensional (rank) matrix factorization that **best approximates the data**

We will start with the **variance maximization** framing (more common) and then return to the **best approximation** framing (more general).

As you explore more advanced dimensionality reduction techniques, they will often seek to find **"simplified representations"** of data from which we can **still approximately recover the original data**

Capturing Total Variance

9867

We define the total variance of as the sum of variances of attri

riance of a data matrix	width	length	area	perimeter
es of attributes.	20	20	400	80
	16	12	192	56
	24	12	288	72
Total Variance: 402.56 =	7.69	5.35	50.79	338.73

Goal of PCA, restated:

Find a linear transformation that creates a low-dimension representation which captures as much of the original data's total variance as possible.

Capturing Total Variance, Approach 1

We define the **total variance** of a data matrix as the sum of variances of attributes.

e of a data matrix	width	length	area	perimeter
attributes.	20	20	400	80
Total Variance: 402.56	16	12	192	56
10tal Variance. 402.50				
	24	12	288	72

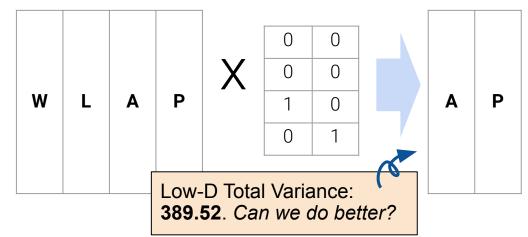
Reasonable Approach 1:

1. Find variances of each attribute

np.var(rectangle,axis=0).sort_values()

height	5.3475
width	7.6891
perimeter	50.7904
area	338.7316
dtype: floa	at64

2. Keep the two attributes with highest variance.

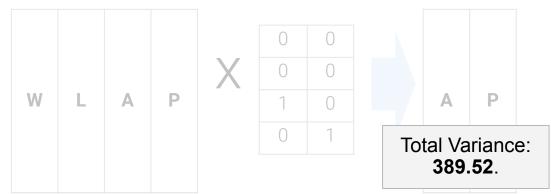


Reasonable Approach 1:

1. Find variances of each attribute

np.var(rect	angle,axis=0).sort_v	/alues
height	5.3475	
width	7.6891	
perimeter	50.7904	
area	338.7316	
dtype: floa	t64	

2. Keep the two attributes with highest variance.



Approach 2: PCA

It turns out that the 2-D approximation that captures the most variance is the following:

-26.4	0.163	
17.0	-2.18	These latent factors (feature columns)
		were constructed by a linear combinations of features
11.8	-1.61	(using PCA).
389.62	7.53	Total Variance: 397.15.

- 1. **Center the data matrix** by subtracting the mean of each attribute column.
- 2. To find **v**_i, the i-th **principal component**:
 - v is a **unit vector** that linearly combines the attributes.
 - v gives a one-dimensional projection of the data.
 - v is chosen to **maximize the variance** along the projection onto v.
 - Choose v such that it is orthogonal to all previous principal components.

k principal components capture the **most variance** of any k-dimensional reduction of the data matrix.

Principal Component Analysis: If you're curious

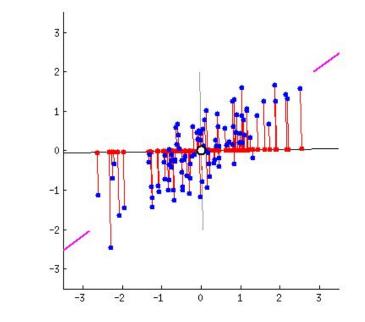
1. Center the data matrix by subtracting the mean of each attribute column.

2. To find \mathbf{v}_{i} , the i-th **principal component**:

- v is a **unit vector** that linearly combines the attributes.
- v gives a one-dimensional projection of the data.
- v is chosen to **maximize the variance** along the projection onto v.
- Choose v such that it is orthogonal to all previous principal components.

k principal components capture the **most variance** of any k-dimensional reduction of the data matrix. Maximizing variance = **spreading out red dots** Minimizing error (i.e., projection) = **making red lines short**

[StackExchange]46



103

(out of scope)

- 1. **Center the data matrix** by subtracting the mean of each attribute column.
- 2. To find **v**_i, the i-th **principal component**:
 - v is a **unit vector** that linearly combines the attributes.
 - v gives a one-dimensional projection of the data.
 - v is chosen to maximize the variance along the projection onto v.
 - Choose v such that it is orthogonal to all previous principal components.

k principal components capture the **most variance** of any k-dimensional reduction of the data matrix. In practice, we don't carry out this procedure.

Instead, we use singular value decomposition (SVD) to find all principal components efficiently.

@080

Stretch Break!

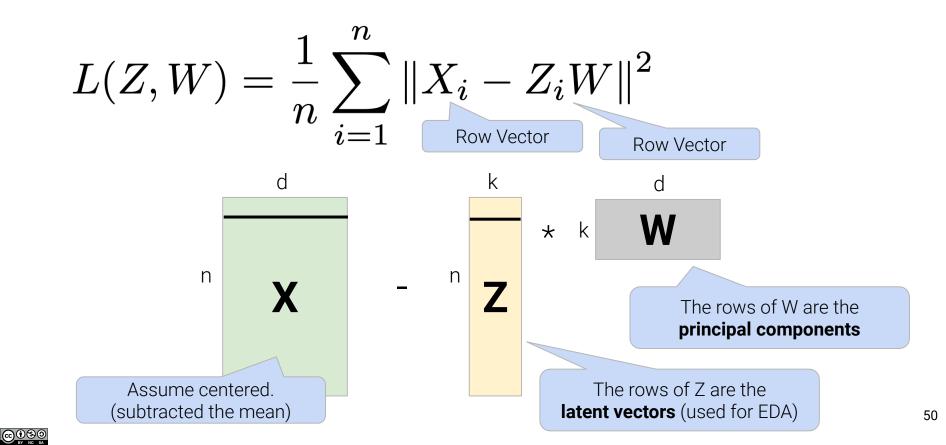
Deriving PCA as Error Minimization

Lecture 24, Data 100 Spring 2024

These are **new slides** for Spring 2024.

You are not expected to be able to be able to redo this derivation, however understanding the derivation may help with future assignments.

Goal: Minimize the reconstruction loss for our matrix factorization model:



Goal: Minimize the reconstruction loss for our matrix factorization model:

$$\begin{split} L(Z,W) &= \frac{1}{n} \sum_{i=1}^{n} \left\| X_{i} - Z_{i} W \right\|^{2} \\ &= \frac{1}{n} \sum_{i=1}^{n} \left(X_{i} - Z_{i} W \right) \left(X_{i} - Z_{i} W \right)^{T} \\ & \overline{\text{Row Vector}} \end{split}$$

Goal: Minimize the reconstruction loss for our matrix factorization model:

$$L(Z, W) = \frac{1}{n} \sum_{i=1}^{n} (X_i - Z_i W) (X_i - Z_i W)^T$$

Recall there are many solutions so **we constrain our model** to:

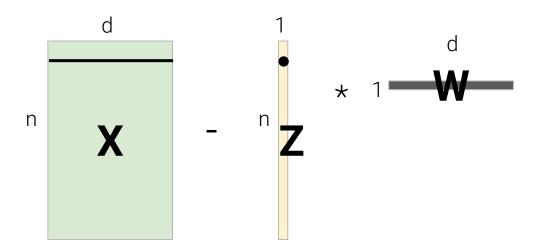
• W is a row-orthonormal matrix (i.e., WW^T=I) where the rows of W are our Principal Components.

Simplified Derivation: consider (k=1)

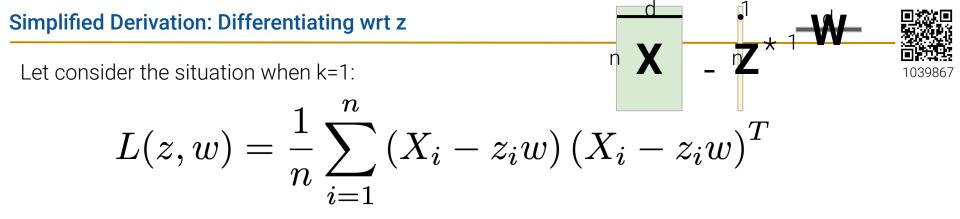
1039867

Let consider the situation when k=1:

$$L(z, w) = \frac{1}{n} \sum_{i=1}^{n} (X_i - z_i w) (X_i - z_i w)^T$$



Derivation based on Kevin Murphy's derivation in the excellent <u>PML Textbook</u>.



Expanding the loss:

Simplified Derivation: Substituting soln for z

Substituting the solution for z: $z_i = X_i w^T$

$$L(z,w) = \frac{1}{n} \sum_{i=1}^{n} \left(-2z_i X_i w^T + z_i^2 \right)$$

$$L(z=Xw^T,w)=rac{1}{n}\sum_{i=1}^n \left(-2X_iw^TX_iw^T+\left(X_iw^T
ight)^2
ight)$$

Algebra:
$$= \frac{1}{n} \sum_{i=1}^{n} (-X_i w^T X_i w^T) = \frac{1}{n} \sum_{i=1}^{n} (-w X_i^T X_i w^T)$$

Definition of Cov (S):
$$= -w rac{1}{n} \sum_{i=1}^n \left(X_i^T X_i
ight) w^T = -w \Sigma w^T$$

1039867

7*

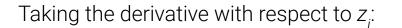
X

n

Simplified Derivation: Solving for z

Let consider the situation when k=1:

$$L(z,w) = \frac{1}{n} \sum_{i=1}^{n} \left(-2z_i X_i w^T + z_i^2 \right)$$



$$\frac{\partial}{\partial z_i} L(z, w) = \frac{1}{n} \left(-2X_i w^T + 2z_i \right)$$

Setting the derivative equal to 0 and solving for z_i :

$$z_i = X_i w^T$$
 We can compute z by projecting onto w

n

Х

1039867

Simplified Derivation: Substituting soln for z

Substituting the solution for z: $z_i = X_i w^T$

$$L(z,w) = \frac{1}{n} \sum_{i=1}^{n} \left(-2z_i X_i w^T + z_i^2 \right)$$

$$L(z = Xw^{T}, w) = \frac{1}{n} \sum_{i=1}^{n} \left(-2X_{i}w^{T}X_{i}w^{T} + \left(X_{i}w^{T}\right)^{2} \right)$$

Algebra:
$$= \frac{1}{n} \sum_{i=1}^{n} \left(-X_i w^T X_i w^T \right) = \frac{1}{n} \sum_{i=1}^{n} \left(-w X_i^T X_i w^T \right)$$

Definition of Cov (S):
$$= -w \frac{1}{n} \sum_{i=1}^{n} (X_i^T X_i) w^T = -w \Sigma w^T$$

1039867

17*

X

n

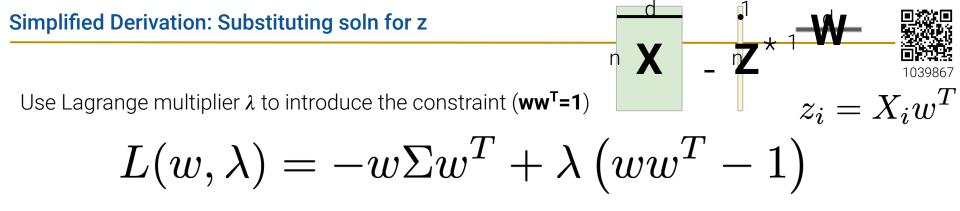
Make w really big (toward infinity) ... but we have the orthonormality constraint ww^T=1

Use Lagrange multiplier λ to introduce the constraint **ww^T=1** to our optimization problem:

$$L(w,\lambda) = -w\Sigma w^T + \lambda \left(ww^T - 1\right)$$

Take derivative with respect to w:

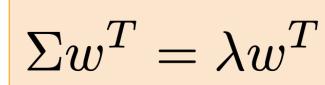
$$\frac{\partial}{\partial w} \left(-w\Sigma w^T + \lambda \left(ww^T - 1 \right) \right) = -2\Sigma w^T + 2\lambda w^T$$



Take derivative with respect to w

$$\frac{\partial}{\partial w} \left(-w\Sigma w^T + \lambda \left(ww^T - 1 \right) \right) = -2\Sigma w^T + 2\lambda w^T$$

Setting equal to zero: $-2\Sigma w^T + 2\lambda w^T = 0$



This implies that:

- I. w is a **unitary eigenvector** of the **covariance matrix** and
- 2. the error is minimized when w is the eigenvector with the largest eigenvalue λ

We can extend the derivation inductively to the next principal component:

$$\frac{\partial}{\partial w_2} L(w_2, \lambda_2, \lambda_{12}) = -w_2 \Sigma w_2^T + \lambda_2 \left(w_2 w_2^T - 1 \right) + \underbrace{\lambda_{12} \left(w_1 w_2^T - 0 \right)}_{z = 1}$$

Taking the derivative with respect to w_2 :

Orthogonality Constraint

$$\frac{\partial}{\partial w_2} L(w_2, \lambda_2, \lambda_{12}) = -2\Sigma w_2^T + 2\lambda_2 w_2^T + \lambda_{12} w_1^T$$

Set equal to 0 and left multiply by w_1 :

$$-2w_{1}\Sigma w_{2}^{T} + 2\lambda_{2}w_{1}w_{2}^{T} + \lambda_{12}w_{1}w_{1}^{T} = 0$$

$$\lambda w_{1}$$

$$\lambda w$$

We can extend the derivation inductively to the next principal component:

$$\frac{\partial}{\partial w_2} L(w_2, \lambda_2, \lambda_{12}) = -w_2 \Sigma w_2^T + \lambda_2 \left(w_2 w_2^T - 1 \right) + \underbrace{\lambda_{12} \left(w_1 w_2^T - 0 \right)}_{W_2}$$

Taking the derivative with respect to w_2 :

Orthogonality Constraint

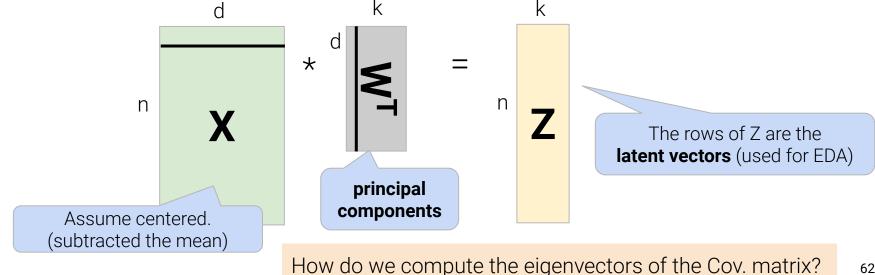
$$\frac{\partial}{\partial w_2} L(w_2, \lambda_2, \lambda_{12}) = -2\Sigma w_2^T + 2\lambda_2 w_2^T + \lambda_{12} w_1^T$$

Set equal to 0 and left multiply by w_1 :

The principal components are the eigenvectors with the largest eigenvalues of the covariance matrix.

These are the directions of **maximum variance** in the data

We can construct the latent factors (the Z matrix) by projecting the centered data X onto the **principal component** vectors:



1.

PCA I

Content credit: Acknowledgments

