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Principal Component Analysis I
A New Tool for EDA using Singular Value Decomposition

LECTURE 24

2

Data 100/Data 200, Spring 2024 @ UC Berkeley
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Taxonomy of Machine Learning

Labeled Data

Supervised Learning

Regression Classification

Categorical 
Response

Quantitative 
Response

3

Data 8: Nearest Neighbors
Earlier: Logistic Regression

In “Supervised Learning”:
Goal is to create a function that maps inputs to 
outputs.
● Model is learned from example input and 

output pairs. Each pair consists of:
○ Input vector (features)
○ Output value (label).

● Regression: Output value is quantitative.
● Classification: Output value is categorical.
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Labeled Data

Taxonomy of Machine Learning

Supervised Learning

Regression Classification

Categorical 
Response

Quantitative 
Response

Unlabeled Data

Unsupervised Learning

4

Data 8: Nearest Neighbors
Earlier: Logistic Regression

In “Unsupervised Learning”:
Goal is to identify patterns in unlabeled data.
● We have features but no labels

○ Sometimes we may have labels, 
but we choose to ignore them.
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Labeled Data

Taxonomy of Machine Learning

Supervised Learning

Regression Classification

Categorical 
Response

Quantitative 
Response

Unlabeled Data

Unsupervised Learning

5

Data 8: Nearest Neighbors
Earlier: Logistic Regression

ClusteringDimensionality Reduction

Today with Principal 
Component Analysis (PCA)

Infer Quantitative Labels
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6

PCA: A Technique for High Dimensional EDA and Featurization

Question & 
Problem

Formulation

Data 
Acquisition

Exploratory 
Data Analysis

Prediction and
Inference

Reports, Decisions, 
and Solutions

SVD
PCA 

PCA II
Applications

today

Principal Component Analysis (PCA) is a linear 
technique for dimensionality reduction.

PCA relies on a linear algebra algorithm called 
Singular Value Decomposition.
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Lecture 24, Data 100 Spring 2024
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Today’s Roadmap

Visualization Revisited
Dimensionality
Principal Component Analysis
Matrix as Transformation
Singular Value Decomposition
PCA with SVD
Data Variance and Centering
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Visualization 
Revisited

Visualization Revisited
Dimensionality
Principal Component Analysis
Matrix as Transformation
Singular Value Decomposition
PCA with SVD
Data Variance and Centering
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9

Demo (MPG Visualization)
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Visualizing Gene Data

10

Visualization can help us identify clusters in our dataset.
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Visualizing Gene Data

11

Visualization can help us identify clusters in our dataset.
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Visualizing Gene Data

12

Visualization can help us identify clusters in our dataset.
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Visualizing Gene Data

13

Since we are all 3D beings, we can’t visualize beyond three dimensions! However, many 
datasets come with more than three features. What can we do?

?
We reduce the dataset to lower 
dimensions → Dimensionality 
reduction
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Dimensionality

Visualization Revisited
Dimensionality
Principal Component Analysis
Matrix as Transformation
Singular Value Decomposition
PCA with SVD
Data Variance and Centering
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Intrinsic Dimension of Data

Suppose we have a dataset of:
● N observations (datapoints)
● d attributes (features).

15

In Linear Algebra:
● N points/row vectors in a d-D space, OR
● d column vectors in an N-D space.

Intrinsic Dimension of a dataset is the minimal set of dimensions needed to approximately 
represent the data.

3D Data

Example:
● 3D Dataset
● Mostly describe by position 

on the 2D-plane.

Intrinsic Dimension ≃ 2
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Dimensionality of the Column Space

Suppose we have a dataset of:
● N observations (datapoints)
● d attributes (features).

16

In Linear Algebra:
● N points/row vectors in a d-D space, OR
● d column vectors in an N-D space.

Height (in) Weight (lbs)

65.8 113.0

71.5 136.5

69.4 153.0

Example:
● “Somewhat” described by 

position on the 1D-plane 
(line)

dimension of the column space 
of A is the rank of matrix A.
Example: 2 dimensions

Intrinsic Dimension of a dataset is the minimal set of dimensions needed to approximately 
represent the data.
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Dimensionality of the Column Space

Suppose we have a dataset of:
● N observations (datapoints)
● d attributes (features).

17

In Linear Algebra:
● N points/row vectors in a d-D space, OR
● d column vectors in an N-D space.

Height (in) Weight (lbs)

65.8 113.0

71.5 136.5

69.4 153.0

Dimension of the column space of A is the rank of matrix A.

Height (in) Weight (lbs) Age

65.8 113.0 17

71.5 136.5 21

69.4 153.0 18

2 dimensions 3 dimensions
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Dimensionality of the Column Space of Data?

Consider the datasets shown.

18��

What would you call the columns space of these datasets.
A. 1-dimensional, C.  3-dimensional
B.  2-dimensional, D.  Something else

Weight (lbs) Weight (kg)

113.0 51.3

136.5 61.9

153.0 69.4

Height (in) Weight (kg) Weight (lbs) Age

65.8 51.3 113.0 17

71.5 61.9 136.5 21

69.4 69.4 153.0 18

Dataset 3 Dataset 4
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What would you call these 
datasets?

ⓘ Start presenting to display the poll results on this slide.

https://www.sli.do/features-google-slides?payload=
https://www.sli.do/features-google-slides?interaction-type=TXVsdGlwbGVDaG9pY2U%3D
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Dimensionality of Data?

Consider the datasets shown.

20

What would you call these datasets?
A. 1-dimensional, C.  3-dimensional
B.  2-dimensional, D.  Something else

Weight (lbs) Weight (kg)

113.0 51.3

136.5 61.9

153.0 69.4

Height (in) Weight (kg) Weight (lbs) Age

65.8 51.3 113.0 17

71.5 61.9 136.5 21

69.4 69.4 153.0 18

Dataset 3 Dataset 4

1-dimensional
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● 3-dimensional, because two weight columns are 
redundant.

● Notice: Matrix of dataset has (column) rank 3!

Dimensionality of Data?

Consider the datasets shown. What would you call these datasets?
A. 1-dimensional, C.  3-dimensional
B.  2-dimensional, D.  Something else

Weight (lbs) Weight (kg)

113.0 51.3

136.5 61.9

153.0 69.4

Height (in) Weight (kg) Weight (lbs) Age

65.8 51.3 113.0 17

71.5 61.9 136.5 21

69.4 69.4 153.0 18

Dataset 3 Dataset 4

1-dimensional

21
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Dimensionality - what does it mean…?

Note that in the dataset below, I’ve added one outlier point to Dataset 3
● Just this one outlier is enough to change the rank of the matrix to 2.
● But the data is still approximately 1-dimensional!

22

Dimensionality reduction is generally 
an approximation of the original data.
This is achieved through matrix 
factorization.

Intrinsic Dimension of a dataset is the 
minimal set of dimensions needed to 
approximately represent the data.
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Matrix 
Decomposition 
(Factorization)

Unsupervised Learning
Dimensionality: The Intuition
Matrix Decomposition (Factorization)
Principal Component Analysis
Singular Value Decomposition
PCA with SVD
PCA Demo: World Data
Centering Data and Computing Variance
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Dimensionality Reduction as Matrix Factorization

24

Age 
(days)

Height 
(in)

Height 
(ft)

182 28 2.33

399 30 2.5

725 33 2.75

630 31 2.58

124 24 2

One linear technique to 
dimensionality reduction is via 
matrix decomposition, 
which is closely tied to 
matrix multiplication.

Age 
(days)

Height 
(in)

182 28

399 30

725 33

630 31

124 24

*
≈ ?

Reduced Dimension 
DatasetOriginal Dataset
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Dimensionality Reduction as Matrix Factorization

25

≈

Reduced Dimension 
DatasetOriginal Dataset

X
n

d

Z
n

k

Wk

d

*

Today we will develop a procedure to 
decompose our data matrix X into a 
lower dimensions matrix Z that when 
multiplied by W approximately recovers 
the original data.



1039867Consider the matrix multiplication example below.

● Each column of the dollars matrix represents the cost of fruit at a store.
○ First store: 2 dollars for an apple, 1 dollar for a lemon, 4 dollars for a melon.

Interpreting Matrix multiplication

2 2 2

5 8 0

2 1

1 1

4 1

14 6

18 13

Number of Fruits

Bowl 1

Bowl 2

# Apples

# Lemons

# M
elons

Store 1

Store 2

Fruit Costs

$/Apple

$/Lemon

$/Melon

● Output is the cost of each bowl at each store.

26

matmul

=x

● Each row of the fruits matrix represents one bowl of fruit.
○ First bowl: 2 apples, 2 lemons, 2 melons.

Two ways to interpret matrix multiplication:
1. Linear operations per datapoint
2. Column transformation.

Bowl 1

Bowl 2

Output

Store 1

Store 2
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=
Multiplication View 1/2: Right matrix is Linear Operations

27

2 2 2

5 8 0

2 1

1 1

4 1

14 6

18 13x
data

operations
Datapoint 1

O
p
e
r
a
ti
o
n

Datapoint 1

Datapoint 1

Datapoint 2

Output1

Output2

O
p
e
r
a
ti
o
n

scale and sum

View 1: Perform multiple linear 
operations on data.
● We use this view when building 

linear models.

[LinAlg Review]



1039867

=
Multiplication View 2/2: Right Matrix Transforms Features

View 1: Perform multiple linear 
operations on data.
● We use this view when building 

linear models.

View 2: Multiplication is a column 
transformation.

28

2 2 2

5 8 0

2 1

1 1

4 1

14 6

18 13x
Original columns

transformation

New column

==

3blue1brown’s Essence of Linear Algebra

[LinAlg Review]

https://www.youtube.com/playlist?list=PLZHQObOWTQDPD3MizzM2xVFitgF8hE_ab
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Matrix Decomposition as a Means of Dimensionality Reduction

29

matmul

Data with reduced 
dimensions transformation* ??

=
Age 
(days)

Height 
(in)

Height 
(ft)

182 28 2.33

399 30 2.5

725 33 2.75
Goal Transformation
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Matrix Decomposition (Matrix Factorization)

Matrix decomposition (a.k.a. Matrix 
Factorization) is the opposite of matrix 
multiplication, i.e. taking a matrix and 
decomposing it into two separate matrices.

30

Age 
(days)

Height 
(in)

Height 
(ft)

182 28 2.33

399 30 2.5

725 33 2.75

● Just like with real numbers,
there are infinitely many such decompositions.
○ 9.9 = 1.1 * 9 = 3.3 * 3.3 = 1 * 9.9 = …

● Matrix sizes aren’t even unique…

Some example factorizations:

1 0 0

0 1 1/12

182 28

399 30

725 33
3x2 2x3*

Goal

Age Height
(in)

Transformation
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Matrix Decomposition: Infinite Ways

Matrix decomposition (a.k.a. Matrix 
Factorization) is the opposite of matrix 
multiplication, i.e. taking a matrix and 
decomposing it into two separate matrices.

31��

Age 
(days)

Height 
(in)

Height 
(ft)

182 28 2.33

399 30 2.5

725 33 2.75

● Just like with real numbers,
there are infinitely many such decompositions.
○ 9.9 = 1.1 * 9 = 3.3 * 3.3 = 1 * 9.9 = …

● Matrix sizes aren’t even unique…

1 0 0

0 1 1/12

182 28

399 30

725 33
3x2 2x3x

182 28 2.33

399 30 2.5

725 33 2.75

1 0 0

0 1 0

0 0 1
x 3x33x3

What are possible matrix factorizations? Select all that apply.
A. (3x2) x (2x3)   C. (3x1) x (1x3)   E. Something else
B. (3x3) x (3x3)   D. (3x4) x (4x3)
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What are possible matrix 
factorizations? Select all 
that apply.

ⓘ
Click Present with Slido or install our Chrome extension to activate this poll 
while presenting.

https://www.sli.do/features-google-slides?interaction-type=TXVsdGlwbGVDaG9pY2U%3D
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What are possible matrix factorizations? Select all that apply.
A. (3x2) x (2x3)   C. (3x1) x (1x3)   E. Something else
B. (3x3) x (3x3)   D. (3x4) x (4x3)

Matrix Decomposition: Limited by Rank

33

182 28 2.33 0

399 30 2.5 0

725 33 2.75 0

1 0 0

0 1 0

0 0 1

99 31 17

x

✅
✅

✅
✅

4x33x4

Fine, but defeats the point 
of dimension reduction…

Age 
(days)

Height 
(in)

Height 
(ft)

182 28 2.33

399 30 2.5

725 33 2.75
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What are possible matrix factorizations? Select all that apply.
A. (3x2) x (2x3)   C. (3x1) x (1x3)   E. Something else
B. (3x3) x (3x3)   D. (3x4) x (4x3)

Matrix Decomposition: Limited by Rank

34
❌

182 28 2.33 0

399 30 2.5 0

725 33 2.75 0

1 0 0

0 1 0

0 0 1

99 31 17

x

✅
✅

✅
✅

4x33x4

Fine, but defeats the point 
of dimension reduction…

a

b

c

x y zx
Impossible, because 
rank of original > 1!

Age 
(days)

Height 
(in)

Height 
(ft)

182 28 2.33

399 30 2.5

725 33 2.75ax/bx = a/b = 182/399
ay/by = a/b = 28/30
Contradiction!

In practice we usually 
construct decompositions < 
rank of the original matrix!

3x1 1x3

They provide approximate 
reconstructions of the original 
matrix.



1039867

What are possible matrix factorizations? Select all that apply.
A. (3x2) x (2x3)   C. (3x1) x (1x3)   E. Something else
B. (3x3) x (3x3)   D. (3x4) x (4x3)

Matrix Decomposition: Limited by Rank

35
❌

182 28 2.33 0

399 30 2.5 0

725 33 2.75 0

1 0 0

0 1 0

0 0 1

99 31 17

x

✅
✅

✅
✅

4x33x4

Fine, but defeats the point 
of dimension reduction…

a

b

c

x y zx
Impossible, because 
rank of original > 1!

Age 
(days)

Height 
(in)

Height 
(ft)

182 28 2.33

399 30 2.5

725 33 2.75ax/bx = a/b = 182/399
ay/by = a/b = 28/30
Contradiction!

In practice we usually 
construct decompositions < 
rank of the original matrix!

3x1 1x3 They provide approximate 
reconstructions of the original 
matrix.

How do we automatically 
choose a reasonable matrix 
decomposition?
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Automatic factorization

Possible goal: Find a procedure to automatically factorize a rank R matrix into an R 
dimensional representation times some transformation matrix.
● Lower dimensional representation avoids redundant features.
● Imagine a 1000 dimensional dataset: If the rank is only 5, it’s much easier to do EDA after 

this mystery procedure.

width length area perimeter

20 20 400 80

16 12 192 56

… … … …

24 12 288 72 36

What is the value 
of R here?

100 x R R x 4

100 x 4

x
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Automatic and Approximate factorization

Possible goal: Find a procedure to automatically factorize a rank R matrix into an R 
dimensional representation times some transformation matrix.
● Lower dimensional representation avoids redundant features.
● Imagine a 1000 dimensional dataset: If the rank is only 5, it’s much easier to do EDA after 

this mystery procedure.

37

What if we wanted a 2-D representation?
● Rank of the 4D matrix is 3, so we can no longer exactly reconstruct the 4-D matrix.

Still, some 2D matrices yield better approximations than others. How well can we do?

2 x 4

width length area perimeter

20 20 400 80

16 12 192 56

… … … …

24 12 288 72

100 x 4

… …

100 x 2

≈ x
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Principal 
Component 
Analysis

Unsupervised Learning
Dimensionality: The Intuition
Matrix Decomposition (Factorization)
Principal Component Analysis
Singular Value Decomposition
PCA with SVD
Centering Data and Computing Variance
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Principal Component Analysis (PCA)

Goal: Transform observations from high-dimensional data down
to low dimensions (often 2) through linear transformations.

Related Goal: Low-dimension representation should capture the 
variability of the original data.

39

4x2width length area perimeter

20 20 400 80

16 12 192 56

10 10 100 40

… … … …

24 12 288 72

x

(to define later)

100 x 4

100 x 2

Transformation
Matrix

… …

Principal 
Components

(cols)

Fi
rs

t P
C

Se
co

nd
 P

C

Latent Factors
(cols)



1039867

Why perform PCA?

Goal: Transform observations from high-dimensional data down
to low dimensions (often 2) through linear transformations.

Related Goal: Low-dimension representation should capture the 
variability of the original data.

40

… …

100 x 2

1    2

Exploratory Data Analysis:
● Visually identify clusters of similar observations in high dimensions.
● You have reason to believe the data are inherently low rank, e.g.,

There are many attributes but only a few mostly determine
the rest through linear associations.

● Some modeling techniques benefit from decorrelated features
○ PCA will eliminate correlations between features.

Why two dimensions?
● Most visualizations are 2-D! Choose the two axes on which to plot datapoints.

Often work with
Latent Factors
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Two Equivalent Framings of PCA

There are two equivalent ways to frame PCA:
1. Finding the directions of maximum variability in the data
2. Finding the low dimensional (rank) matrix factorization that best approximates the data 

We will start with the variance maximization framing (more common) and then return to the 
best approximation framing (more general).

As you explore more advanced dimensionality reduction techniques, they will often seek to 
find “simplified representations” of data from which we can still approximately recover the 
original data

41
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Capturing Total Variance

We define the total variance of a data matrix 
as the sum of variances of attributes.

42

width length area perimeter

20 20 400 80

16 12 192 56

… … … …

24 12 288 72

7.69Total Variance: 402.56    = 5.35 50.79 338.73

Goal of PCA, restated: 
Find a linear transformation that creates a low-dimension representation which captures as 
much of the original data’s total variance as possible.
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Capturing Total Variance, Approach 1

We define the total variance of a data matrix 
as the sum of variances of attributes.

43

width length area perimeter

20 20 400 80

16 12 192 56

… … … …

24 12 288 72
Reasonable Approach 1:
1. Find variances of each attribute

W L A P

0 0

0 0

1 0

0 1

x

2. Keep the two attributes with highest variance.

A P

Low-D Total Variance: 
389.52. Can we do better?

Total Variance: 402.56
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Capturing Total Variance: PCA’s approach

Approach 2: PCA
It turns out that the 2-D 
approximation that captures the most 
variance is the following:

44

-26.4 0.163

17.0 -2.18

… …

11.8 -1.61

389.62 7.53 Total Variance: 397.15.

Reasonable Approach 1:
1. Find variances of each attribute

W L A P

0 0

0 0

1 0

0 1

x

2. Keep the two attributes with highest variance.

A P

These latent factors (feature columns) 
were constructed by a
linear combinations of features 
(using PCA).

Total Variance: 
389.52.



1039867

Principal Component Analysis: A Procedural View

1. Center the data matrix by subtracting the 
mean of each attribute column.

2. To find vi, the i-th principal component:
● v is a unit vector that linearly combines 

the attributes.
● v gives a one-dimensional projection of 

the data.
● v is chosen to maximize the variance 

along the projection onto v.
● Choose v such that it is orthogonal to 

all previous principal components.

45

k principal components capture the most 
variance of any k-dimensional reduction of 
the data matrix.
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Principal Component Analysis: If you’re curious

1. Center the data matrix by subtracting the 
mean of each attribute column.

2. To find vi, the i-th principal component:
● v is a unit vector that linearly combines 

the attributes.
● v gives a one-dimensional projection of 

the data.
● v is chosen to maximize the variance 

along the projection onto v.
● Choose v such that it is orthogonal to 

all previous principal components.

46

k principal components capture the most 
variance of any k-dimensional reduction of 
the data matrix.

Maximizing variance = spreading out red dots
Minimizing error (i.e., projection)

= making red lines short
[StackExchange]

(out of scope)

https://stats.stackexchange.com/questions/2691/making-sense-of-principal-component-analysis-eigenvectors-eigenvalues/140579#140579
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Principal Component Analysis: A Procedural View

1. Center the data matrix by subtracting the 
mean of each attribute column.

2. To find vi, the i-th principal component:
● v is a unit vector that linearly combines 

the attributes.
● v gives a one-dimensional projection of 

the data.
● v is chosen to maximize the variance 

along the projection onto v.
● Choose v such that it is orthogonal to 

all previous principal components.

47

In practice, we don’t carry out this 
procedure.

Instead, we use singular value 
decomposition (SVD) to find all principal 
components efficiently.

k principal components capture the most 
variance of any k-dimensional reduction of 
the data matrix.
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48

Stretch Break!
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These are new slides for Spring 2024.

You are not expected to be able to be able 
to redo this derivation, however 
understanding the derivation may help with 
future assignments.Deriving PCA as

Error Minimization
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Derive PCA using Loss Minimization

Goal: Minimize the reconstruction loss for our matrix factorization model:

50

-X
n

d

Z
n

k

Wk

d

*

Row Vector Row Vector

Assume centered. 
(subtracted the mean)

The rows of W are the 
principal components

The rows of Z are the 
latent vectors (used for EDA)
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Derive PCA using Loss Minimization

Goal: Minimize the reconstruction loss for our matrix factorization model:

51

Row Vector
Column Vector
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Derive PCA using Loss Minimization

Goal: Minimize the reconstruction loss for our matrix factorization model:

52

Recall there are many solutions so we constrain our model to:
● W is a row-orthonormal matrix (i.e., WWT=I) where the rows of W are our Principal 

Components.
  

W W
T

1
1

1

1
…

*             =
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Simplified Derivation: consider (k=1)

Let consider the situation when k=1:

53

-X
n

d

Z
n

1

W1

d

*

Derivation based on Kevin Murphy’s derivation in the excellent PML Textbook.

https://github.com/probml/pml-book/releases/latest/download/book1.pdf
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Simplified Derivation: Differentiating wrt z

Let consider the situation when k=1:

54

-Xn

d

Zn
1

W1
d

*

Expanding the loss:

=1 by 
orthonormalityConstant (ignore)
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Simplified Derivation: Substituting soln for z

Substituting the solution for z:

55

-Xn

d

Zn
1

W1
d

*

Definition of Cov (Σ):

Algebra:
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Simplified Derivation: Solving for z

Let consider the situation when k=1:

56

-Xn

d

Zn
1

W1
d

*

Taking the derivative with respect to zi:

Setting the derivative equal to 0 and solving for zi:

We can compute z by 
projecting onto w
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Simplified Derivation: Substituting soln for z

Substituting the solution for z:

57

-Xn

d

Zn
1

W1
d

*

Definition of Cov (Σ):

Algebra:
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Simplified Derivation: Substituting soln for z

Minimize the loss with respect to w:

58

-Xn

d

Zn
1

W1
d

*

Make w really big (toward infinity) … but we have the orthonormality constraint wwT=1

Use Lagrange multiplier 𝜆 to introduce the constraint wwT=1 to our optimization problem:

Take derivative with respect to w:
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Simplified Derivation: Substituting soln for z
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-Xn

d

Zn
1

W1
d

*
Use Lagrange multiplier 𝜆 to introduce the constraint (wwT=1)

Take derivative with respect to w

Setting equal to zero:

This implies that:
1. w is a unitary eigenvector of the covariance matrix and 
2. the error is minimized when w is the eigenvector with the 

largest eigenvalue 𝜆
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Extending the Derivation to the Second PC (Bonus) 

We can extend the derivation inductively to the next principal component:

60

Taking the derivative with respect to w2:

Set equal to 0 and left multiply by w1:

0 1

0

Orthogonality 
Constraint
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Extending the Derivation to the Second PC (Bonus) 

We can extend the derivation inductively to the next principal component:
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Taking the derivative with respect to w2:

Set equal to 0 and left multiply by w1:

0 1

0

Orthogonality 
Constraint
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Take Away from the Optimization Framing

The principal components are the eigenvectors with the largest eigenvalues of the 
covariance matrix. 
● These are the directions of maximum variance in the data

62

X
n

d

W
T

k
d

*

Assume centered. 
(subtracted the mean)

principal 
components

Z
n

k

The rows of Z are the 
latent vectors (used for EDA)

=

We can construct the latent factors (the Z matrix) by projecting the centered data X 
onto the principal component vectors:

How do we compute the eigenvectors of the Cov. matrix?



1039867

Lecture Stopped Here

1.
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PCA I
Content credit: Acknowledgments

LECTURE 25
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https://ds100.org/sp23/acks/

