1 of 9

<code></green>

Timeshifting computation to reduce the carbon emission of software

Dr. Anne Hartebrodt

Biomedical Network Science Lab

Department Artificial Intelligence in Biomedical Engineering

Friedrich-Alexander-Universität Erlangen-Nürnberg

https://www.bionets.tf.fau.de

08,70

06,00

05,00

00,00

07,70

08,90

15,50

00,30

00,30

15,50

08,70

06,00

05,00

00,00

07,70

08,90

15,50

00,30

00,30

15,50

2 of 9

Computing emits carbon…

Greenhouse gas protocol:

  • Scope 1: On-site operations
  • Scope 2: Energy-consumption on-site
  • Scope 3: Supply chain/ Embedded emissions

Carbon intensity:

  • How much carbon is emitted per KWh
  • Fluctuates significantly throughout the day and geographically

-> There is carbon saving potential by shifting the computation to a suitable time or location

…. 2.8 - 3.9% of global greenhouse gas emissions [1].

2

(Foto: Erich Malter/RRZE)

08,70

06,00

05,00

00,00

07,70

08,90

15,50

00,30

00,30

15,50

3 of 9

How does that relate to cloud computing?

Timeshifting: Delay computation until CO2eq/KwH falls below a certain threshold.

Why?:

  • CO2 intensity of electricity

production fluctuates throughout

the day.

Pros:

  • Can save up the 8% CO2 emission [2]

Cons:

  • Assumes that you are not at

full capacity all the time.

Problems:

  • Prediction horizon (18:00)
  • Data availability
  • Data granularity

Time shifting

3

08,70

06,00

05,00

00,00

07,70

08,90

15,50

00,30

00,30

15,50

4 of 9

How does that relate to cloud computing?

Location shifting: Move the computation to a

geographic location where the energy is sources

from less carbon intensive energy sources.

Pros:

  • Could technically half the emission? [2]
  • No time delay.

Cons:

  • Assumes that you can move

your data (privacy, volume, …).

Problems:

  • Prediction horizon (18:00)
  • Data availability
  • Data granularity

Location shifting

4

08,70

06,00

05,00

00,00

07,70

08,90

15,50

00,30

00,30

15,50

5 of 9

<code></green> Software

API+ python client

5

08,70

06,00

05,00

00,00

07,70

08,90

15,50

00,30

00,30

15,50

6 of 9

<code></green> Software

API+ python client

6

08,70

06,00

05,00

00,00

07,70

08,90

15,50

00,30

00,30

15,50

7 of 9

<code></green> Software

  • Currently: ‘Green-ness’ measures as the percentage of wind and solar from total energy
    • other low carbon sources: hydro and nuclear.
    • Optimal: Use carbon-intensity.
    • Also possible: Use price (correlates heavily with renewables)

  • Improve parametrization:
    • Run time can be estimated for standard workflows based on previous runs.
    • Potential delay can be projected.
    • Looking for trace files, reports, etc to gain understanding for standard procedures
      • Total run time, CPU, GPU, Memory usage, workflow steps/tools.

  • Improve usability

  • Estimate realistic gains in CO2 efficiency.

Work in progress

7

08,70

06,00

05,00

00,00

07,70

08,90

15,50

00,30

00,30

15,50

8 of 9

Acknowledgements

Biomedical Network Science Lab @AIBE @FAU

Prof. Dr. David B. Blumenthal

Students

Shubh V. Jain

Soham Ekbote

Hyunjung Wang

Pratiksha Manik Patil

Contact:

Anne Hartebrodt

anne.hartebrodt@fau.de

Send me:

  • Machine readable trace files, execution reports. Add in subject: [EGD-carbon-aware]
  • Questions!
  • Ideas!

8

08,70

06,00

05,00

00,00

07,70

08,90

15,50

00,30

00,30

15,50

9 of 9

References

Image sources:

https://www.forbes.com/home-improvement/solar/american-solar-panel-manufacturers/

https://www.pv-magazine.com/2022/09/15/germany-to-tender-1-5-gw-of-additional-solar-power/

https://newtransparency.entsoe.eu

https://app.electricitymaps.com/map

https://smard.de

[1] The real climate and transformative impact of ICT: A critique of estimates, trends, and regulations. Charlotte Freitag, Mike Berners-Lee, Kelly Widdicks, Bran Knowles, Gordon S. Blair, and Adrian Friday, https://doi.org/10.1016/j.patter.2021.100340

[2] Dodge, J. et al. Measuring the Carbon Intensity of AI in Cloud Instances. in 2022 ACM Conference on Fairness, Accountability, and Transparency 1877–1894 (ACM, 2022). doi:10.1145/3531146.3533234.

9

08,70

06,00

05,00

00,00

07,70

08,90

15,50

00,30

00,30

15,50