
Mass Proxy Revocation

Alexander J. Vincent
ajvincent@gmail.comhttps://github.com/ajvincent/es-membrane

https://github.com/ajvincent/es-membrane

Proxy creation takes two arguments.
● new Proxy(shadowTarget, proxyHandler);
● Proxy.revocable(shadowTarget, proxyHandler);

○ Returns { proxy, revoke() }

Shadow
target

Membrane

WeakMap

<html>

Proxy
Handler Proxy Handler

<html> proxy

Background: Membranes combine proxies, maps.
This is fine for individual proxies, but doesn’t scale well.

If you have hundreds of proxies, you have hundreds of revoker functions, or you
don’t care about revoking proxies at all.

● We can reasonably expect membranes to meet this criterion.
○ Revocation of entire object graphs is a security measure: denying access.
○ Revocation means invoking every revoker function for an object graph.

● Membranes are in use now.
○ Mozilla Firefox has a membrane, via “cross-compartment wrappers”, for its DOM.
○ Salesforce’s observable-membrane, observing interactions in object graphs.

https://searchfox.org/mozilla-central/source/js/src/proxy/CrossCompartmentWrapper.cpp
https://github.com/salesforce/observable-membrane

What is a membrane?
<html>

<head>

 <title>Hello</title>

 <script src=”hello.js”></script>

</head>

<body>

 <p>

 <button onclick=”doSomething();”>Hi</button>

 </p>

</body>

</html>

function doSomething() {

 const button = document.getElementsByTagName(

 “button”

)[0];

 button.disabled = true;

 const p = document.createElement(“p”);

 p.appendChild(“Good day!”);

 document.body.appendChild(p);

}

Web browsers implement and trust the elements.
The elements are “native”, living inside the
browser’s trusted code, and are objects.

JavaScript code is foreign to the browser, and the
browser treats that code with suspicion.

The browser provides some access to the objects,
but it doesn’t dare provide unrestricted access.

A membrane separates “mutually suspicious” object graphs from each other, using proxies to tunnel through.

<html>

<body>

<head>

Membranes interpose between object graphs.

firstChild

lastChild

parentNode

parentNode

firstChild

lastChild

parentNode

parentNode

“Blue” “Yellow”

<html>

Event
listener

<body>

Membranes interpose between object graphs.

lastChild lastChild

parentNode

addEventListener()addEventListener()

“Blue” “Yellow”

Why are membranes important?
❏ Security against accessing API which an object graph shouldn’t expose.

❏ Limiting impacts on objects you don’t control.

❏ Integrating components from different sources.

Membranes motivated Proxy and WeakMap.
● A Document Object Model often has hundreds, if not thousands, of nodes:

elements, and text mostly, but they’re everywhere.

● Blocking access to internal API requires one proxy per underlying object.
○ Thus, one revoker function per proxy.
○ We now have “hyper-membrane” models, with multiple object graphs and different capabilities

per graph, which I’ll explain shortly. This means one proxy per underlying object, per graph,
and one revoker function per proxy.

● Other complex data structures may have similar requirements.

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Proxy
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/WeakMap

Now, imagine revoking hundreds or thousands of proxies synchronously, with one
revoker function for every proxy. That’s where we are right now in membranes.

● We can probably fudge a little with custom proxy handlers, but we still need to
create the revokers, and hold them somewhere, some way.

○ A revoker holds a reference to the proxy in an internal slot.
○ The proxy holds a strong reference to the shadow target.
○ Think WeakMap<shadowTarget, revoker>. This would allow revocation during trap invocation,

if we emulate the traps for revoked proxies in our proxy handler.

● Did I mention membranes are really hard to implement correctly?
○ This is why abstraction libraries like observable-membrane and es-membrane exist.

Membranes motivated Proxy and WeakMap.

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Proxy
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/WeakMap

Membranes: The cell model
● The first model of a membrane was based

around cell membranes in biology: an
impenetrable (except by Proxy) boundary
to separate what’s inside the boundary
(here, “green”) from what’s outside
(“blue”).

● Understanding biology isn’t necessary.
This is just to illustrate the model Dr. Mark
Miller and Dr. Tom van Cutsem used for
their first membranes.

● The original concept was one-to-one
mappings, with a maximum of two sides.

● We represent objects by circles, proxies
by semicircles.

“Green”

“Blue”

● Each object graph is in a plane, and each
object graph plane is parallel to the other
plane.

● We now describe objects by spheres
instead of circles, embedding their centers
in each plane.

● We describe proxies by hemispheres
instead of semicircles, embedding their flat
edges in each plane.

● Cylinders perpendicular to the object
graph planes connect each proxy to its
underlying object, showing the relations.

Membranes: The geometric model

<html>

<html>

<body>
onload

<body>

onload

“Blue”

“Green”

● Physical distance has no meaning within
each object graph plane and between
planes, except that spheres and
hemispheres shall not intersect.

● This model is equivalent to the cell
membrane model, with two differences:

○ The idea of “inside versus outside” goes
away.

○ There’s plenty of space for more object
graph planes...

<html>

<html>

<body>
onload

<body>

onload

“Blue”

“Green”

Membranes: The geometric model

<html>

<html>

<html>

<body>
onload

<body>

onload

<body>
onload

“Purple”

● Now we can move from two object graphs
to n object graphs, as many as we want.

● Graph planes are unordered, swappable.

● Technically, by creating links between
object graphs, we’ve created a type of
hypergraph.

● Mark proposed calling Alex’s invention a
hyper-membrane, but Alex thinks
hypergraph membrane is a better name.

● Before this naming debate (and this
model), the convention was to call these
“multi-sided membranes”. These are still
new enough that the names are
interchangeable.

“Blue”

“Green”

Membranes: The geometric model

https://en.wikipedia.org/wiki/Hypergraph

<html>

<html>

<html>

<body>
onload

<body>

onload

<body>
onload

“Purple”

“Blue”

“Green”

Cleaning up an object graph is why we’re here.
● Imagine we want to revoke the “green”

object graph. This requires:

○ Creating and holding revokers for every
proxy in the “green” object graph.

○ Executing all those revokers.
Synchronously.

○ Revoking the “onload” proxies in the “blue”
and “purple” object graphs. (Including
overhead to track these revokers and tie
them to the “green” graph.)

● In the ECMAScript spec, each revoker is a
function to clear two slots: the target and
the handler. That’s it.

Proposal: Add an options argument to proxies.
● new Proxy(shadowTarget, proxyHandler, options = {});
● Proxy.revocable(shadowTarget, proxyHandler, options = {});

The options object would initially support one property, a “revocation signal”.

● We could share the signal among many proxies.
● Proxies would have a new internal slot pointing to this signal.

○ If the signal is revoked, proxies can clear their slots and throw.
○ Garbage collection can treat proxies holding a revoked signal as dead,

and clear the slots.

// The finalization registry inspired this API. Names of static methods open to change.
// A symbol, so we can pass it across realms if necessary.
const signal = Proxy.createSignal();
return new Proxy(shadowTarget, proxyHandler, { signal });
// ...
Proxy.finalizeSignal(signal); // kills the proxy.

Proposal: Add an options argument to proxies.
This would mean membranes might not need Proxy.revocable(). So we wouldn’t
create so many revokers in the first place.

● Less memory allocation, less garbage collection pressure.
● Hundreds of revoker functions reduce to far fewer: at most one for each

element of the power set of object graphs.
○ “blue” + “green”, not “blue” + “green” + “purple” unless a proxy has a dependency on more

than two graphs

Cross-cutting concern: Cancellation Proposal
● The exact shape of the “revocation signal” API is flexible at this point.

● The “revocation signal” could be a cancellation API, presuming the latter
moves forward.

Mass Proxy Revocation

Thank you. Stage 1?

Alexander J. Vincent
ajvincent@gmail.comhttps://github.com/ajvincent/es-membrane

https://github.com/ajvincent/es-membrane

