
WebGPU
An Explicit Graphics API for the
Web
Austin Eng, Google*
enga@google.com

*I do not officially represent Google

Many thanks to my teammates
Corentin Wallez, Kai Ninomiya, and many others at Google

mailto:enga@google.com

Review: Why use explicit APIs
like Vulkan?

Many slides taken from Corentin’s 2016 CIS 565 guest lecture

and Kai’s 2017 CIS 565 guest lecture

https://docs.google.com/presentation/d/12YSEcLjyYStNDK9EwhPgRq05oIxpTIqC1GdKgJd_Jt4
https://docs.google.com/presentation/d/1Z_3-3V6FRsF8OJNeH7yc6UKtgXy90Ggff07V9Z6uo6U

Review: Why use explicit APIs like Vulkan?

● Explicit memory management
● Multithreading
● Async compute
● ...and more!

Texture resizing in OpenGL

User resizing texture:

● Resize the texture
● Use it
● :D

Driver resizing texture:

● Allocate new memory
● Use new memory
● :D

User resizing texture:

● Resize the texture
● Use it
● :D

Driver resizing texture:

● Allocate new memory
○ Insert fence

○ Check the fence every frame?

○ Garbage collect memory

● Use new memory
● :/

Texture resizing in OpenGL

User resizing texture:

● Resize the texture
● Use it
● :D

Driver resizing texture:

● Allocate new memory
○ Insert fence

○ Check the fence every frame?

○ Garbage collect memory
■ Dirty uniforms passed to shaders
■ Dirty framebuffers
■ Dirty texture buffers

● Use new memory
● :(

Texture resizing in OpenGL

Why: Predictable behavior and performance

Applications can:

● Control when expensive operations happen
● Have low variance frame timing (VR)
● Be smarter than the OpenGL driver

Why: Consoles

Graphics development on console:

● Direct access to the hardware
● Manual memory management
● Getting to that last 1% of performance
● Multithreading

Developers want that on PC too.

Why: Multithreading

Destiny’s Multi-threaded Renderer Architecture by Natalya Tatarchuk

● Simulation
● Determine views

(for rendering, shadow-mapping, etc.)

● Compute visibility

● Extract data for rendering
● Generate draw calls

(decouple)

http://advances.realtimerendering.com/destiny/gdc_2015/Tatarchuk_GDC_2015__Destiny_Renderer_web.pdf

Command buffers enable multithreading

vkBeginCommandBuffer
 vkCmdSetPipeline
 vkCmdDrawArrays
 vkCmdSetScissor
 vkCmdDrawArrays
vkEndCommandBuffer

vkBeginCommandBuffer
 vkCmdSetPipeline
 vkCmdDrawArrays
 vkCmdSetPipeline
 vkCmdSetPushConstants
 vkCmdDrawArrays
vkEndCommandBuffer

vkBeginCommandBuffer
 vkCmdSetPipeline
 vkCmdDrawArrays
vkEndCommandBuffer

CmdBuf1 CmdBuf2 CmdBuf3 Queue
vkQueueSubmit

Thread 1 Thread 2 Thread 3

Why: Multithreading

Core 1

Core 2

Core 3

Core 4

Single-threaded APIs

Graphics

Other

Core 1

Core 2

Core 3

Core 4

Multi-threaded APIs

Why: Async Compute

Shadow
maps Physics Deferred

ShadingG-Buffer Transparents PostFX

Rasterization
bound

ALU
bound

Memory
bound

ALU
bound

ALU
bound

Rasterization
and memory

bound

Why: Async Compute

Shadow
maps Physics Deferred

ShadingG-Buffer Transparents PostFX

Rasterization
bound

ALU
bound

Memory
bound

ALU
bound

ALU
bound

Rasterization
and memory

bound

Shadow maps

Physics

G-Buffer Transparents

Deferred Shading PostFX

Case Study: Vulkan Grass Rendering (project 6)

We almost have async compute! How can we do better?

● Compute:
○ Apply forces
○ Update `Blade` buffer
○ Cull blades

● Memory barrier (compute->graphics)
Waits for compute pipeline to finish.

● Graphics: Rasterize + Tessellate

https://github.com/CIS565-Fall-2018/Project6-Vulkan-Grass-Rendering

Case Study: Vulkan Grass Rendering (project 6)

● Decouple physics and culling
○ Compute expensive physics for several frames in the future

simultaneously
○ This step is camera-independent

● Compute culled blades for the next frame
● Memory barrier (compute->graphics)

Does not wait. Blades were culled while rendering the previous frame.

● Graphics: Rasterize + Tessellate

https://github.com/CIS565-Fall-2018/Project6-Vulkan-Grass-Rendering

Explicit Graphics APIs on the
Web
https://github.com/gpuweb/gpuweb

https://github.com/gpuweb/gpuweb

A Few Goals:

● Security & Stability
○ A website can’t be allowed to read your data

○ Native APIs allow unsafe operations and undefined behavior

● Portability
○ Create an API to map onto D3D12, Metal, and Vulkan

○ The Web should work the same everywhere, no matter what platform

● Fast
○ Multithreading

○ WebAssembly

○ Web Workers

It’s happening, but it’s hard...

● See Kai’s presentation to learn about the process of designing this API

● Reaching agreement with the other browser vendors takes a lot of time
and discussion

https://docs.google.com/presentation/d/1Z_3-3V6FRsF8OJNeH7yc6UKtgXy90Ggff07V9Z6uo6U

Dawn, a WebGPU
implementation*
API overview, examples, assorted details, and cool things

https://dawn.googlesource.com/dawn

*API subject to change

https://dawn.googlesource.com/dawn

API Overview: Resource Binding

Binding

Binding Binding Binding

Binding

Push constants

Bind Group
Constants

register
array

A binding can be any of:
● A texture descriptor
● A uniform buffer descriptor
● A sampler descriptor
● ...

Binding Binding

Binding Binding

Resource Binding

Very similar to Vulkan:
● Pipeline layouts, composed of bind group layouts, define the structure

of resource bindings for a pipeline

● Bind groups are created from bind group layouts and contain
references to resources (buffer views, texture views, etc.)

● Bind groups are set on a pipeline when recording a command buffer

Resource Binding in Dawn
// Create bind group layouts
dawn::BindGroupBinding bufferBindings[] = {

{ 0, dawn::ShaderStageBit::Compute, dawn::BindingType::Sampler }, // (binding = 0) G-buffer sampler
{ 1, dawn::ShaderStageBit::Compute, dawn::BindingType::SampledTexture }, // (binding = 1) G-buffer
{ 2, dawn::ShaderStageBit::Compute, dawn::BindingType::StorageBuffer }, // (binding = 2) index buffer
{ 3, dawn::ShaderStageBit::Compute, dawn::BindingType::StorageBuffer }, // (binding = 3) vertex buffer
{ 4, dawn::ShaderStageBit::Compute, dawn::BindingType::StorageBuffer }, // (binding = 4) output color buffer

};
dawn::BindGroupLayoutDescriptor bufferBindGroupLayoutDesc { nullptr, 5, bufferBindings };
dawn::BindGroupLayout bufferBindGroupLayout = device.CreateBindGroupLayout(&bufferBindGroupLayoutDesc);

// Create other bind group layouts...

Sampler SampledTexture StorageBuffer StorageBuffer StorageBuffer

Resource Binding in Dawn
// Create pipeline

dawn::BindGroupLayout bindGroupLayouts[] = {
cameraBindGroupLayout, // (set = 0)
bufferBindGroupLayout, // (set = 1)
modelBindGroupLayout, // (set = 2)

};
dawn::PipelineLayoutDescriptor pipelineLayoutDesc { nullptr, 3, bindGroupLayouts };
dawn::PipelineLayout pipelineLayout = device.CreatePipelineLayout(&pipelineLayoutDesc);

dawn::ShaderModule csModule = utils::CreateShaderModule(device, dawn::ShaderStage::Compute,
kComputeShaderString);
dawn::ComputePipelineDescriptor computePipelineDesc{nullptr, pipelineLayout, csModule, "main"};
dawn::ComputePipeline computePipeline = device.CreateComputePipeline(&computePipelineDesc);

cameraBindGroupLayout

bufferBindGroupLayout

modelBindGroupLayout

Resource Binding in Dawn
// Create camera bind group
dawn::BindGroupBinding bindings[] = {

{ 0, dawn::BindingType::BufferView, cameraBufferView },
};
dawn::BindGroupDescriptor bindGroupDesc { cameraBindGroupLayout, 1, bindings }
dawn::BindGroup cameraBindGroup = device.CreateBindGroup(&bindGroupDesc);

// Create bind groups for all models
for (Model* model : models) {

dawn::BindGroupBinding bindings[] = {
{ 0, dawn::BindingType::BufferView, model->bufferView },
{ 1, dawn::BindingType::TextureView, model->textureView },
{ 2, dawn::BindingType::Sampler, model->sampler },

};
dawn::BindGroupDescriptor bindGroupDesc { modelBindGroupLayout, 3, bindings }
model->modelBindGroup = device.CreateBindGroup(&bindGroupDesc);

}

Resource Binding in Dawn
// Set bind groups
dawn::ComputePassEncoder pass = builder.BeginComputePass();
pass.SetComputePipeline(computePipeline);
pass.SetBindGroup(0, cameraBindGroup);
for (ModelGroup* modelGroup : modelGroups) {

pass.SetBindGroup(1, modelGroup->bufferBindGroup);
for (Model* model : modelGroup->GetModels()) {

pass.SetBindGroup(2, model->modelBindGroup);
pass.Dispatch(1280, 960, 1);

}
}
pass.EndPass();

API Overview: Pipelines

Render / Compute Pipelines
A big object that defines fixed-function state and format of the inputs and
outputs:
● Pipeline layout (set of bind group layouts)
● Compiled shaders

Render pipelines only:
● Various state

○ Blending, depth, stencil, input format, etc.
● Framebuffer attachment formats

Creating a Render Pipeline
// Create depth stencil state
dawn::DepthStencilStateDescriptor depthStencilStateDesc;
depthStencilStateDesc.depthWriteEnabled = true;
depthStencilStateDesc.depthCompare = dawn::CompareFunction::Less;
dawn::DepthStencilState depthStencilState =

device.CreateDepthStencilState(&depthStencilStateDesc);

// Create vertex input and attribute state
dawn::VertexAttributeDescriptor vertexAttribs[] = {

{0, 0, 0, dawn::VertexFormat::FloatR32G32B32A32},
{1, 1, 0, dawn::VertexFormat::FloatR32}};

dawn::VertexInputDescriptor vertexInputs[] = {
{0, 0, dawn::InputStepMode::Vertex},
{1, 0, dawn::InputStepMode::Instance}};

dawn::InputStateDescriptor inputStateDesc;
inputStateDesc.indexFormat = dawn::IndexFormat::UInt32;
inputStateDesc.attributes = vertexAttribs;
inputStateDesc.numAttributes = 2;
inputStateDesc.inputs = vertexInputs;
inputStateDesc.numInputs = 2;

// Create attachment states
dawn::Attachment colorAttachments[] = {{ dawn::TextureFormat::R8G8B8A8Uint }};
dawn::Attachment depthStencilAttachment { dawn::TextureFormat::D32FloatS8Uint };
dawn::AttachmentsState attachmentsState { colorAttachments, 1, depthStencilAttachment };

// Create pipeline layout
dawn::PipelineLayoutDescriptor pipelineLayoutDesc;
pipelineLayoutDesc.numBindGroupLayouts = 4;
pipelineLayoutDesc.bindGroupLayouts = bindGroupLayouts;
dawn::PipelineLayout pipelineLayout =

device.CreatePipelineLayout(&pipelineLayoutDesc);

// Create render pipeline
dawn::RenderPipelineDescriptor renderPipelineDesc;
renderPipelineDesc.vertexStage =

dawn::PipelineStageDescriptor { vsModule, "main" };
renderPipelineDesc.fragmentStage =

dawn::PipelineStageDescriptor { fsModule, "main" };
renderPipelineDesc.primitiveTopology = dawn::PrimitiveTopology::TriangleList;
renderPipelineDesc.depthStencilState = depthStencilState;
renderPipelineDesc.inputState = inputState;
renderPipelineDesc.attachmentsState = attachmentsState;

dawn::RenderPipeline pipeline =
device.CreateRenderPipeline(&renderPipelineDesc);

API Overview: Command
Submission

Render/Compute Passes

● Encode a group of commands into the command buffer
Render passes: setVertexBuffers(...), draw(...), etc.
Compute passes: dispatch(...)

Render passes:
● Contain attachment descriptions

○ g-buffers, color buffers, etc.

Implicit Resource Transitions

● Resources must not change usage within a pass
ex.) Transition from vertex to uniform buffer

● Resources are synchronized:
○ At pass boundaries, to transition usage

○ For UAVs between dispatch() calls

● Implicit resource transitions make application development
significantly easier

● Explicit transitions are faster, but forgetting them leads to undefined
behavior

Example Render / Compute Passes
// Example command buffer for a particle simulation
dawn::CommandBuffer createCommandBuffer(

const dawn::RenderPassDescriptor& renderPass,
uint32_t i) {

static const uint32_t zero = 0u;
auto& bufferDst = particleBuffers[(i + 1) % 2]; // ping pong between these
dawn::CommandBufferBuilder builder = device.CreateCommandBufferBuilder();
{

dawn::ComputePassEncoder pass = builder.BeginComputePass();
pass.SetComputePipeline(computePipeline);
pass.SetBindGroup(0, bindGroups[i]); // This where bufferDst is bound for writing the particle attributes
pass.Dispatch(kNumParticles, 1, 1);
pass.EndPass();

}
{

dawn::RenderPassEncoder pass = builder.BeginRenderPass(renderPass);
pass.SetRenderPipeline(renderPipeline);
pass.SetVertexBuffers(0, 1, &bufferDst, &zero); // Bind bufferDst as a vertex buffer for particles
pass.SetVertexBuffers(1, 1, &modelBuffer, &zero);
pass.DrawArrays(3, kNumParticles, 0, 0);
pass.EndPass();

}
return builder.GetResult();

}

static uint32_t pingpong = 0;
void frame() {

dawn::CommandBuffer commandBuffer =
createCommandBuffer(renderPass, pingpong);

queue.Submit(1, &commandBuffer);
pingpong = (pingpong + 1) % 2;

}

for (uint32_t i = 0; i < 2; ++i) {
// Create camera bind group
dawn::BindGroupBinding bindings[] = {

{ 0, dawn::BindingType::BufferView, simulationUniforms },
{ 1, dawn::BindingType::BufferView, bufferViews[i] },
{ 2, dawn::BindingType::BufferView, bufferViews[(i + 1) % 2] },

};
dawn::BindGroupDescriptor bindGroupDesc { bindGroupLayout, 1, bindings }
bindGroups[i] = device.CreateBindGroup(&bindGroupDesc);

}

Implementing Timeline Fences
(simplified)

And cool things I’ve learned in my first few months about
interprocess communication and GPU servicification.

What is a Fence?

● A synchronization primitive used to wait for execution on the GPU to
complete

● For WebGPU, we’ve settled on “numerical fences”
○ Monotonically increasing values indicate a timestamp in GPU

execution history.
Hence, the name “timeline fences”

What is a Fence?

queue.Submit(1, &commands1); // submit commands1
queue.Signal(fence, 1u);
queue.Submit(1, &commands2); // submit commands2
queue.Signal(fence, 2u);
queue.Submit(1, &commands3); // submit commands3
queue.Signal(fence, 3u);

// Some time later...
uint64_t completedValue = fence.GetCompletedValue();

// Suppose completedValue == 2.
// That means that commands1 and commands2 have finished executing.
// commands3 may not have finished executing.

Implementing Timeline Fences in Dawn
struct Fence {

uint64_t signalValue = 0;
uint64_t completedValue = 0;

};

struct Queue {
struct SignaledFence {

Fence fence;
VkFence nativeFence;
uint64_t signalValue;

};

std::vector<SignaledFence> signaledFences;
};

void Queue::Signal(Fence fence, uint64_t signalValue)
{

if (signalValue <= fence.signalValue) {
// Validation error: Fence values must
// increase monotonically
return;

}
fence.signalValue = signalValue;
VkFence nativeFence;
vkCreateFence(device, createInfo, nullptr,

 &nativeFence);
vkQueueSubmit(queue, 0, nullptr, nativeFence);
signaledFences.push_back(
 SignaledFence{
 fence, nativeFence, signalValue});

}

Implementing Timeline Fences in Dawn
struct Fence {

uint64_t signalValue = 0;
uint64_t completedValue = 0;

};

struct Queue {
struct SignaledFence {

Fence fence;
VkFence nativeFence;
uint64_t signalValue;

};

std::vector<SignaledFence> signaledFences;
};

void Queue::Signal(Fence fence, uint64_t signalValue)
{

if (signalValue <= fence.signalValue) {
// Validation error: Fence values must
// increase monotonically
return;

}
fence.signalValue = signalValue;
VkFence nativeFence;
vkCreateFence(device, createInfo, nullptr,

 &nativeFence);
vkQueueSubmit(queue, 0, nullptr, nativeFence);
signaledFences.push_back(
 SignaledFence{
 fence, nativeFence, signalValue});

}

A Fence stores the last signaled
value and the value that has
completed execution on the
GPU

Implementing Timeline Fences in Dawn
struct Fence {

uint64_t signalValue = 0;
uint64_t completedValue = 0;

};

struct Queue {
struct SignaledFence {

Fence fence;
VkFence nativeFence;
uint64_t signalValue;

};

std::vector<SignaledFence> signaledFences;
};

void Queue::Signal(Fence fence, uint64_t signalValue)
{

if (signalValue <= fence.signalValue) {
// Validation error: Fence values must
// increase monotonically
return;

}
fence.signalValue = signalValue;
VkFence nativeFence;
vkCreateFence(device, createInfo, nullptr,

 &nativeFence);
vkQueueSubmit(queue, 0, nullptr, nativeFence);
signaledFences.push_back(
 SignaledFence{
 fence, nativeFence, signalValue});

}

When we signal a Fence, create a native
vkFence and signal it on a queue.

Add the fence to a list of signaled fences we
will check later

Implementing Timeline Fences in Dawn

void Queue::DoThisOccasionally() {
for (auto it = signaledFences.begin(); it != signaledFences.end();) {

if (vkGetFenceStatus(device, it.nativeFence) == VK_SUCCESS) {
// The native fence is complete. Update the completedValue
it.fence.completedValue = it.signalValue;
it = signaledFences.erase(it);

} else {
it++;

}
}

}

uint64_t Fence::GetCompletedValue() {
return completedValue;

}

Every once in a while, go through
the list of all fences and update the
fences that have completed.

Returns a Fence’s completedValue

Implementing Timeline Fences in Dawn

void Queue::DoThisOccasionally() {
for (auto it = signaledFences.begin(); it != signaledFences.end();) {

if (vkGetFenceStatus(device, it.nativeFence) == VK_SUCCESS) {
// The native fence is complete. Update the completedValue
it.fence.completedValue = it.signalValue;
it = signaledFences.erase(it);

} else {
it++;

}
}

}

uint64_t Fence::GetCompletedValue() {
return completedValue;

}

This doesn’t
“just work” on the
Web :(

The client browser talks to our
server Dawn implementation via
interprocess communication using
a command buffer.

The client does not run Dawn, it
asks a service to execute
commands.

Client Server

fence.GetCompletedValue()int x = fence.GetCompletedValue(); I’ll compute that and let you
know in just a bit...

This doesn’t
“just work” on the
Web :(

The client browser talks to our
server Dawn implementation via
interprocess communication using
a command buffer.

The client does not run Dawn, it
asks a service to execute
commands.

Client Server

fence.GetCompletedValue()int x = fence.GetCompletedValue(); I’ll compute that and let you
know in just a bit...

?!? This is supposed to be
synchronous. What do I
assign to x!?

Timeline Fences: Client-Side State Tracking
Client Server

signaledValue completedValue

fence 0 0

queue.Signal(fence, 2u);

Timeline Fences: Client-Side State Tracking
Client Server

signaledValue completedValue

fence 2 0

queue.Signal(fence, 2u);

clientQueueSignalStub(...); serverQueueSignalStub(...);

queue.Signal(fence, 2u);
fence.onCompletion(2u, ForwardFenceValue);

Timeline Fences: Client-Side State Tracking
Client Server

signaledValue completedValue

fence 2 0

queue.Signal(fence, 2u);

clientQueueSignalStub(...); serverQueueSignalStub(...);

queue.Signal(fence, 2u);
fence.onCompletion(2u, ForwardFenceValue);int x = fence.GetCompletedValue(); // x <-- 0

Timeline Fences: Client-Side State Tracking
Client Server

signaledValue completedValue

fence 2 2

queue.Signal(fence, 2u);

clientQueueSignalStub(...); serverQueueSignalStub(...);

queue.Signal(fence, 2u);
fence.onCompletion(2u, ForwardFenceValue);int x = fence.GetCompletedValue(); // x <-- 0

handleFenceValueUpdate(...); // Some time later...
ForwardFenceValue(fence, 2u);

Timeline Fences: Client-Side State Tracking
Client Server

signaledValue completedValue

fence 2 2

queue.Signal(fence, 2u);

clientQueueSignalStub(...); serverQueueSignalStub(...);

queue.Signal(fence, 2u);
fence.onCompletion(2u, ForwardFenceValue);int x = fence.GetCompletedValue(); // x <-- 0

// Some time later...
ForwardFenceValue(fence, 2u);

handleFenceValueUpdate(...);

// Some time later...
int y = fence.GetCompletedValue(); // y <-- 2

This Client / Server separation
exists for every object in Dawn.

It’s actually pretty simple, but this concept was
foreign to me when I was first introduced

What is actually happening here?
dawn::Buffer buffer =

device.CreateBuffer(&descriptor);

buffer.SetSubData(0, 10, data);

● The Client doesn’t have any real buffers

● The Client asks the Server to execute

commands

● How does this code actually call

buffer.SetSubData(0, 10, data);?

Objects in Dawn (simplified)
dawn::Buffer buffer =

device.CreateBuffer(&descriptor);

● Get a free ObjectID* for the bind group
● Allocate a “Buffer” Object

○ This is pretty much just
struct ClientBuffer {

uint32_t id;
};

● Tell the server to create a real bind group and map
it to ObjectID

● Return the ClientBuffer

*This is actually two ids for reasons I won’t explain

Objects in Dawn (simplified)
dawn::Buffer buffer =

device.CreateBuffer(&descriptor);

● Get a free ObjectID* for the bind group
● Allocate a “Buffer” Object

○ This is pretty much just
struct ClientBuffer {

uint32_t id;
};

● Tell the server to create a real bind group and map
it to ObjectID

● Return the ClientBuffer

● Actually create a real Buffer
● Map the ObjectID to the created buffer

*This is actually two ids for reasons I won’t explain

Objects in Dawn (simplified)
buffer.SetSubData(0, 10, data);

● BufferSetSubDataCmd cmd {
buffer.id,
0, 10, data

};

Objects in Dawn (simplified)
buffer.SetSubData(0, 10, data);

● BufferSetSubDataCmd cmd {
buffer.id,
0, 10, data

};

● Lookup the ObjectID and get a pointer to a

Buffer

● Execute
buffer.SetSubData(0, 10, data);

Summary

Communicating between the Client and Server can be slow

● Transfer as little information as possible
○ Don’t send large objects between the Client and Server
○ Use ObjectIds which give the Client a “handle” to Server objects

● Reduce Client-Server dependencies so the Client is not blocked
○ Objects can be created and their ObjectIds used in other commands

without needing to wait for the server

Demo :)

Career Advice?

To prepare for the future,
Don’t optimize for the future.

Tomorrow is inherently uncertain.

Don’t pour too much energy into
perfecting a future that may never occur.

More specifically:
● Don’t make decisions out of

fear of future regret.
● Appreciate and enjoy the

opportunities before you now.

