이제 하이퍼파라미터 튜닝은 케라스 튜너에게 맡기세요
이제 발표도 인공지능에게 맡기세요
하 하 하
정승환 대표님 및 라이온로켓분들 감사합니다.
숨막히는 대본
허 허 허
...
model = Sequential()
model.add(Conv2D(32, kernel_size=(3, 3), activation='relu', input_shape=(28, 28, 1)))
model.add(Conv2D(64, kernel_size=(3, 3), activation='relu'))
model.add(Flatten())
model.add(Dense(20, activation='relu'))
model.add(Dropout(0.2))
model.add(Dense(10, activation='softmax'))
model.compile(loss='categorical_crossentropy', optimizer=Adam(0.001))
model.summary()
model.add(Conv2D(32, kernel_size=(3, 3), activation='relu', input_shape=(28, 28, 1)))
model.add(Dense(20, activation='relu'))
model.add(Dropout(0.2))
model.add(Dense(10, activation='softmax'))
model.compile(loss='categorical_crossentropy', optimizer=Adam(0.001))
LR = Choice('learning_rate', [0.001, 0.0005, 0.0001], group='optimizer')
DROPOUT_RATE = Linear('dropout_rate', 0.0, 0.5, 5, group='dense')
NUM_DIMS = Range('num_dims', 8, 32, 8, group='dense')
NUM_LAYERS = Range('num_layers', 1, 3, group='dense')
L2_NUM_FILTERS = Range('l2_num_filters', 8, 64, 8, group='cnn')
L1_NUM_FILTERS = Range('l1_num_filters', 8, 64, 8, group='cnn')
def model_fn():
LR = Choice('learning_rate', [0.001, 0.0005, 0.0001], group='optimizer')
DROPOUT_RATE = Linear('dropout_rate', 0.0, 0.5, 5, group='dense')
NUM_DIMS = Range('num_dims', 8, 32, 8, group='dense')
NUM_LAYERS = Range('num_layers', 1, 3, group='dense')
L2_NUM_FILTERS = Range('l2_num_filters', 8, 64, 8, group='cnn')
L1_NUM_FILTERS = Range('l1_num_filters', 8, 64, 8, group='cnn')
model = Sequential()
model.add(Conv2D(L1_NUM_FILTERS, kernel_size=(3, 3), activation='relu'))
model.add(Conv2D(L2_NUM_FILTERS, kernel_size=(3, 3), activation='relu'))
model.add(Flatten())
for _ in range(NUM_LAYERS):
model.add(Dense(NUM_DIMS, activation='relu'))
model.add(Dropout(DROPOUT_RATE))
model.add(Dense(10, activation='softmax'))
model.compile(loss='categorical_crossentropy', optimizer=Adam(LR))
� return model
tuner = Tuner(model_fn, 'val_accuracy' epoch_budget=500, max_epochs=5)
tuner.search(train_data,validation_data=validation_data)
짝 짝 짝