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Disclaimer

I’m talking about Java 8 here.

HotSpot only. G1 collector only. Probably not be accurate for anything else.

Your mileage may vary...



What do we mean by 
JVM Heap?



Typical View of HotSpot G1 Heap
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Okay, so what’s 
“off-heap”?



JVM Off-Heap

● Metaspace
○ Class metadata

● Threads (frame stack here)
○ Every thread you make gets allocated a stack for method frames & local variables etc.

● JVM itself, native stack & heap
○ The JVM is a program, it uses memory too!



Is that all?



Off-Piste Off-Heap

● Direct buffers
○ Byte Buffers you can allocate outside the heap

● Zip streams
○ HotSpot JVM implements the zip code using native code, while zipping and not closed 

memory will be allocated off-heap

● JNI/JNA libraries
○ Here you’re on your own in terms of memory management, could be doing anything



How much memory am I using?

`htop`

Check out the process information pseudo-filesystem

See `man proc` for more info

`less /proc/8702/status`



Example

Test application running on HotSpot JVM 1.8 running on Linux 4.17 (x86_64)

Heap size set using -Xmx to 32MB

Roughly 2MB of JARs.

It starts a few threads and uses one 30KB native library via JNI.

Finger in the air estimate for max memory use: nothing over 75MB?



Example - Starting



And now, we wait...



Example - Plotting RSS



Okay, so where do I 
start?



JMAP

● Jmap command - Java memory map

● Prints shared object memory maps or heap memory details

● Useful to get an idea of where the JVM thinks memory has been allocated

● https://docs.oracle.com/javase/8/docs/technotes/guides/troubleshoot/tooldescr0

14.html 

https://docs.oracle.com/javase/8/docs/technotes/guides/troubleshoot/tooldescr014.html
https://docs.oracle.com/javase/8/docs/technotes/guides/troubleshoot/tooldescr014.html


jmap -heap <example-pid>



Places looked

 Heap ✓
 Off-heap

 Metaspace 
 Direct Buffers 
 Zip Steams 
 Threads
 JVM
 JNI/JNA



Time to roll up your 
sleeves



JVisualVM

● Java VisualVM is a GUI for monitoring the JVM

● You can see graphs for CPU and memory use

● Plugins let you see GC information, access MBeans and see off-heap buffer sizes

● Take a heap dump and explore it, looking for large or oddly long-lived objects
○ With a heap dump you can look for inflate/deflate instances which might be indicative of 

unclosed zip streams

● Alternatives tools are available: jconsole, mission control, yourkit, etc.

● https://docs.oracle.com/javase/8/docs/technotes/tools/unix/jvisualvm.html 

https://docs.oracle.com/javase/8/docs/technotes/tools/unix/jvisualvm.html


VisualVM: Monitor tab



VisualVM: Visual GC plugin



VisualVM: Buffer pools plugin



Jvisualvm heap dump



Places looked

 Heap ✓
 Off-heap

 Metaspace ✓
 Direct Buffers ✓
 Zip Steams ✓
 Threads
 JVM
 JNI/JNA



Not there? Time to step it 
up a notch



Native Memory Tracking

● NMT is a Java HotSpot VM feature to track internal memory usage of the VM

● Has a summary and detail mode

● Has to be enabled via flag at application startup
○ -XX:NativeMemoryTracking=summary | -XX:NativeMemoryTracking=detail

● Can get snapshots or diffs from a baseline using the jcmd utility

● Enabling NMT will result in a 5-10 percent JVM performance drop and memory usage for 

NMT adds 2 machine words to all malloc memory as malloc header. NMT memory usage is 

also tracked by NMT.

● https://docs.oracle.com/javase/8/docs/technotes/guides/troubleshoot/tooldescr007.html 

● https://docs.oracle.com/javase/8/docs/technotes/guides/troubleshoot/tooldescr006.html

https://docs.oracle.com/javase/8/docs/technotes/guides/troubleshoot/tooldescr007.html
https://docs.oracle.com/javase/8/docs/technotes/guides/troubleshoot/tooldescr006.html#BABEHABG


jcmd <example-pid> VM.native_memory summary.diff



Places looked

 Heap ✓
 Off-heap

 Metaspace ✓
 Direct Buffers ✓
 Zip Steams ✓
 Threads ✓
 JVM ✓ ←  kinda
 JNI/JNA



Fairly sure it’s JNI/JNA, 
but how to prove it?



JEMALLOC

● General purpose malloc implementation from FreeBSD

● Has profiling options (not on by default, may need to compile yourself)

● Can be loaded instead of default linux glibc malloc via environment variable

● Config also passed via environment variable
○ Use jemalloc profiling, memory profile dump every 30 mB, allocation sample every 128 kB
○ export 

MALLOC_CONF=prof:true,lg_prof_interval:25,lg_prof_sample:17
○ Note: interval/sample values are in log base 2 for some reason?

● Shows what stack traces led to calling malloc

● http://jemalloc.net/ 

● https://linux.die.net/man/3/jemalloc 

● https://github.com/jemalloc/jemalloc/wiki/Use-Case%3A-Leak-Checking 

http://jemalloc.net/
https://linux.die.net/man/3/jemalloc
https://github.com/jemalloc/jemalloc/wiki/Use-Case%3A-Leak-Checking


jeprof all heap samples



jeprof last heap sample



Whoops!



Conclusion

● Despite being a Java dev with GC lending you a hand, you can still get burned by 
strange memory leak issues

● There’s more tooling in the JVM than just looking at heap stats and dumps
● If you are writing native code, don’t forget to free!

Example code: https://github.com/Palmr/java-off-heap-leak-example 

https://github.com/Palmr/java-off-heap-leak-example

