
Tracking Off Heap
Memory in the JVM

Nick Palmer (2018)

Disclaimer

I’m talking about Java 8 here.

HotSpot only. G1 collector only. Probably not be accurate for anything else.

Your mileage may vary...

What do we mean by
JVM Heap?

Typical View of HotSpot G1 Heap

Survivor Space

Young Generation Old Generation

Eden S0 S1 Tenured

Okay, so what’s
“off-heap”?

JVM Off-Heap

● Metaspace
○ Class metadata

● Threads (frame stack here)
○ Every thread you make gets allocated a stack for method frames & local variables etc.

● JVM itself, native stack & heap
○ The JVM is a program, it uses memory too!

Is that all?

Off-Piste Off-Heap

● Direct buffers
○ Byte Buffers you can allocate outside the heap

● Zip streams
○ HotSpot JVM implements the zip code using native code, while zipping and not closed

memory will be allocated off-heap

● JNI/JNA libraries
○ Here you’re on your own in terms of memory management, could be doing anything

How much memory am I using?

`htop`

Check out the process information pseudo-filesystem

See `man proc` for more info

`less /proc/8702/status`

Example

Test application running on HotSpot JVM 1.8 running on Linux 4.17 (x86_64)

Heap size set using -Xmx to 32MB

Roughly 2MB of JARs.

It starts a few threads and uses one 30KB native library via JNI.

Finger in the air estimate for max memory use: nothing over 75MB?

Example - Starting

And now, we wait...

Example - Plotting RSS

Okay, so where do I
start?

JMAP

● Jmap command - Java memory map

● Prints shared object memory maps or heap memory details

● Useful to get an idea of where the JVM thinks memory has been allocated

● https://docs.oracle.com/javase/8/docs/technotes/guides/troubleshoot/tooldescr0

14.html

https://docs.oracle.com/javase/8/docs/technotes/guides/troubleshoot/tooldescr014.html
https://docs.oracle.com/javase/8/docs/technotes/guides/troubleshoot/tooldescr014.html

jmap -heap <example-pid>

Places looked

 Heap ✓
 Off-heap

 Metaspace
 Direct Buffers
 Zip Steams
 Threads
 JVM
 JNI/JNA

Time to roll up your
sleeves

JVisualVM

● Java VisualVM is a GUI for monitoring the JVM

● You can see graphs for CPU and memory use

● Plugins let you see GC information, access MBeans and see off-heap buffer sizes

● Take a heap dump and explore it, looking for large or oddly long-lived objects
○ With a heap dump you can look for inflate/deflate instances which might be indicative of

unclosed zip streams

● Alternatives tools are available: jconsole, mission control, yourkit, etc.

● https://docs.oracle.com/javase/8/docs/technotes/tools/unix/jvisualvm.html

https://docs.oracle.com/javase/8/docs/technotes/tools/unix/jvisualvm.html

VisualVM: Monitor tab

VisualVM: Visual GC plugin

VisualVM: Buffer pools plugin

Jvisualvm heap dump

Places looked

 Heap ✓
 Off-heap

 Metaspace ✓
 Direct Buffers ✓
 Zip Steams ✓
 Threads
 JVM
 JNI/JNA

Not there? Time to step it
up a notch

Native Memory Tracking

● NMT is a Java HotSpot VM feature to track internal memory usage of the VM

● Has a summary and detail mode

● Has to be enabled via flag at application startup
○ -XX:NativeMemoryTracking=summary | -XX:NativeMemoryTracking=detail

● Can get snapshots or diffs from a baseline using the jcmd utility

● Enabling NMT will result in a 5-10 percent JVM performance drop and memory usage for

NMT adds 2 machine words to all malloc memory as malloc header. NMT memory usage is

also tracked by NMT.

● https://docs.oracle.com/javase/8/docs/technotes/guides/troubleshoot/tooldescr007.html

● https://docs.oracle.com/javase/8/docs/technotes/guides/troubleshoot/tooldescr006.html

https://docs.oracle.com/javase/8/docs/technotes/guides/troubleshoot/tooldescr007.html
https://docs.oracle.com/javase/8/docs/technotes/guides/troubleshoot/tooldescr006.html#BABEHABG

jcmd <example-pid> VM.native_memory summary.diff

Places looked

 Heap ✓
 Off-heap

 Metaspace ✓
 Direct Buffers ✓
 Zip Steams ✓
 Threads ✓
 JVM ✓ ← kinda
 JNI/JNA

Fairly sure it’s JNI/JNA,
but how to prove it?

JEMALLOC

● General purpose malloc implementation from FreeBSD

● Has profiling options (not on by default, may need to compile yourself)

● Can be loaded instead of default linux glibc malloc via environment variable

● Config also passed via environment variable
○ Use jemalloc profiling, memory profile dump every 30 mB, allocation sample every 128 kB
○ export

MALLOC_CONF=prof:true,lg_prof_interval:25,lg_prof_sample:17
○ Note: interval/sample values are in log base 2 for some reason?

● Shows what stack traces led to calling malloc

● http://jemalloc.net/

● https://linux.die.net/man/3/jemalloc

● https://github.com/jemalloc/jemalloc/wiki/Use-Case%3A-Leak-Checking

http://jemalloc.net/
https://linux.die.net/man/3/jemalloc
https://github.com/jemalloc/jemalloc/wiki/Use-Case%3A-Leak-Checking

jeprof all heap samples

jeprof last heap sample

Whoops!

Conclusion

● Despite being a Java dev with GC lending you a hand, you can still get burned by
strange memory leak issues

● There’s more tooling in the JVM than just looking at heap stats and dumps
● If you are writing native code, don’t forget to free!

Example code: https://github.com/Palmr/java-off-heap-leak-example

https://github.com/Palmr/java-off-heap-leak-example

