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Goku Mohandas

Founder @ MadeWithML
AI Researcher @ Apple
ML & Product Lead @ an oncology informatics 
startup (acq. by Invitae) 

→ Find Goku on Twitter and LinkedIn
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https://madewithml.com/
https://twitter.com/GokuMohandas
https://linkedin.com/in/goku


Background

● Background in health (informatics, materials, genomics) from Johns Hopkins
● ML + health (informatics, time-series, etc.) at Georgia Tech
● Co-founded a rideshare analytics app to predict surge locations (HotSpot)
● Worked on applied NLP (+ product) at Apple
● ML + Product lead at an oncology informatics startup (acquired by Invitae)
● Teaching, advising + developing at MadeWithML
● Future: back to health as foundations are currently established
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Always happy to chat if you need help or working on something cool! 
→ Connect with me on Twitter and LinkedIn

https://madewithml.com/
https://twitter.com/GokuMohandas
https://linkedin.com/in/goku


Agenda
1. Task, splitting & baselines set up
2. Metrics (coarse/fine-grained)
3. Confusion matrix
4. Confidence learning (+ calibration)
5. Manual slices
6. Generated slices (explicit & hidden 

stratification)
7. Evaluating evaluations (CI/CD suite)
8. Testing ML
9. Evaluation reports (dashboards / cards)

10. Monitoring ML
11. Evaluation startup ideas 💡
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My take: Evaluation is one of the most 
underserved yet critical data-centric 
aspects of ML systems design that 
can enable true reliability and 
programmatic iteration.
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👉 Follow along using 
MadeWithML’s lesson and interactive 
notebook.

https://madewithml.com/courses/mlops/evaluation/
https://colab.research.google.com/github/GokuMohandas/MLOps/blob/main/notebooks/tagifai.ipynb


Set up
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● Full set up available at MadeWithML
● Skipping most of  product and data 

topics so we can focus on evaluation
● Quickly cover task, splitting and 

baselines since they have strong ties 
to evaluation

● Also cover aspects of testing, 
dashboards, CI/CD & monitoring

● Jumping b/w code blocks and 
content found → here 

focus for today →

https://madewithml.com
https://madewithml.com/courses/mlops/evaluation/


Task
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● [Simplified] Predict topic tags (from a specified set of of tags) for a given project (text).



Task
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● Using a project’s text + 
description to predict 
relevant tags (>30 
occurrences).

@widgets.interact(min_tag_freq=(0, tags.most_common()[0][1]))
def separate_tags_by_freq(min_tag_freq=30):
    tags_above_freq = Counter(tag for tag in tags.elements()
                                    if tags[tag] >= min_tag_freq)
    tags_below_freq = Counter(tag for tag in tags.elements()
                                    if tags[tag] < min_tag_freq)
    print ("Most popular tags:\n", tags_above_freq.most_common(5))
    print ("\nTags that just made the cut:\n", tags_above_freq.most_common()[-5:])
    print ("\nTags that just missed the cut:\n", tags_below_freq.most_common(5))

Most popular tags:
 [('natural-language-processing', 429),
  ('computer-vision', 388),
  ('pytorch', 258),
  ('tensorflow', 213),
  ('transformers', 196)]

Tags that just made the cut:
 [('time-series', 34),
  ('flask', 34),
  ('node-classification', 33),
  ('question-answering', 32),
  ('pretraining', 30)]

Tags that just missed the cut:
 [('model-compression', 29),
  ('fastai', 29),
  ('graph-classification', 29),
  ('recurrent-neural-networks', 28),
  ('adversarial-learning', 28)]

# Filter tags that have fewer than <min_tag_freq> occurrences
min_tag_freq = 30
tags_above_freq = Counter(tag for tag in tags.elements()
                          if tags[tag] >= min_tag_freq)
df.tags = df.tags.apply(filter, include=list(tags_above_freq.keys()))



Splitting
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● Offline evaluation can’t be trusted if we don’t properly compose our data splits.

→ let’s go to the code!

https://madewithml.com/courses/mlops/splitting/#naive-split


Baselines
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Fix the data. Iterate on models.

1. Start with the simplest possible baseline to 
compare subsequent development with. 
This is often a random (chance) model.

2. Develop a rule-based approach (when 
possible) using IFTTT, auxiliary data, etc.

3. Slowly add complexity by addressing 
limitations and motivating representations 
and model architectures.

4. Weigh tradeoffs (performance, latency, 
size, etc.) between performant baselines.

5. Revisit and iterate on baselines as your 
dataset grows.

Fix the models. Iterate on data.

● remove or fix data samples (FP, FN)
● prepare and transform features
● expand or consolidate classes
● incorporate auxiliary datasets
● identify unique slices to 

augment/boost

Many are discovered post offline evaluation!
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zooming in on performance today →
but there are many aspects to 

model evaluation!



Baselines
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● Set your reproducibility components! 
○ set_seeds()
○ get_data_splits(df, train_size=0.7)
○ Trainer(object)

■ train_step(self, dataloader)
■ eval_step(self, dataloader)
■ predict_step(self, dataloader)
■ train(self, num_epochs, patience, train_dataloader, val_dataloader)

● Subset for quick initial runs 
# Shuffling since projects are chronologically organized
if shuffle:
    df = df.sample(frac=1).reset_index(drop=True)

# Subset
if num_samples:
    df = df[:num_samples]

→ let’s go to the code to see the 
baseline implementations

https://madewithml.com/courses/mlops/baselines/#random


Labels and predictions
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# Data to evaluate
device = torch.device("cuda")
loss_fn = nn.BCEWithLogitsLoss(weight=class_weights_tensor)
trainer = Trainer(model=model.to(device), device=device, loss_fn=loss_fn)
test_loss, y_true, y_prob = trainer.eval_step(dataloader=test_dataloader)
y_pred = np.array([np.where(prob >= threshold, 1, 0) for prob in y_prob])

array([[0, 0, 0, ..., 0, 0, 0],
       [0, 0, 1, ..., 0, 0, 0],
       [0, 0, 1, ..., 0, 0, 0],
       ...,
       [0, 1, 0, ..., 0, 0, 0],
       [0, 0, 0, ..., 1, 0, 0],
       [0, 0, 0, ..., 0, 0, 0]])

array([[1.86e-03, 4.90e-03, ..., 3.65e-02],
       [9.99e-03, 2.12e-03, ..., 5.34e-03],
       [5.11e-02, 7.21e-03, ..., 3.85e-02],
       ...,
       [4.84e-02, 9.68e-03, ..., 1.63e-01]])

array([[0., 0., 0., ..., 0., 0., 0.],
       [0., 0., 1., ..., 0., 0., 0.],
       [0., 0., 0., ..., 0., 0., 0.],
       ...,
       [0., 0., 0., ..., 0., 0., 1.]])



Coarse-grained metrics
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# Metrics
metrics = {"overall": {}, "class": {}}

# Overall metrics
overall_metrics = precision_recall_fscore_support(y_test, y_pred, average="weighted")
metrics["overall"]["precision"] = overall_metrics[0]
metrics["overall"]["recall"] = overall_metrics[1]
metrics["overall"]["f1"] = overall_metrics[2]
metrics["overall"]["num_samples"] = np.float64(len(y_true))
print (json.dumps(metrics["overall"], indent=4))

{
    "precision": 0.7896647806486397,
    "recall": 0.5965665236051502,
    "f1": 0.6612830799421741,
    "num_samples": 218.0

}

average metrics with class 
imbalances factored it



Fine-grained metrics
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metrics calculated for 
each unique class

# Per-class metrics
class_metrics = precision_recall_fscore_support(y_test, y_pred, average=None)
for i, _class in enumerate(label_encoder.classes):
    metrics["class"][_class] = {
        "precision": class_metrics[0][i],
        "recall": class_metrics[1][i],
        "f1": class_metrics[2][i],
        "num_samples": np.float64(class_metrics[3][i]),
    }

# Metrics for a specific class
tag = "transformers"
print (json.dumps(metrics["class"][tag], indent=2))

{
  "precision": 0.6428571428571429,
  "recall": 0.6428571428571429,
  "f1": 0.6428571428571429,
  "num_samples": 28.0

}



Fine-grained metrics
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● Be sure to especially inspect test metrics of classes with low # of samples

# Number of samples vs. performance (per class)
f1s = [metrics["class"][_class]["f1"]*100. for _class in label_encoder.classes]
num_samples = np.sum(y_train, axis=0).tolist()
sorted_lists = sorted(zip(*[num_samples, f1s]))
num_samples, f1s = list(zip(*sorted_lists))



Confusion matrix
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● True positives (TP): prediction = ground-truth

● False positives (FP): falsely predict sample 
belongs to class

● False negatives (FN): falsely predict sample 
does not belong to class

→ learn about where our model performs well.

→ identify potentially mislabeled samples.

→ identify the model's less performant areas 
to boost later.

→ let’s go to the code to identify these subsets!

Tip: we should have a scaled version that's tied to labeling 
and sampling workflows so we can act on our findings 
from this view.

https://madewithml.com/courses/mlops/evaluation/#confusion-matrix


Confidence learning
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● Inspect probabilities instead of predicted labels
● Categorical

○ prediction is incorrect (also indicate TN, FP, FN)
○ confidence score for the correct class is below a 

threshold
○ confidence score for an incorrect class is above 

a threshold
○ standard deviation of confidence scores over 

top N samples is low
○ different predictions from same model using 

different/previous parameters
● Continuous

○ difference between predicted and ground-truth 
values is above some %

# Confidence score for the incorrect class is 
above a threshold
high_confidence = []
max_threshold = 0.2
for i in range(len(y_test)):
    indices = np.where(y_test[i]==0)[0]
    probs = y_prob[i][indices]
    classes = []
    for index in 
np.where(probs>=max_threshold)[0]:
        
classes.append(label_encoder.index_to_class[i
ndices[index]])
    if len(classes):
        high_confidence.append({"text": 
test_df.text[i], "classes": classes})



Calibration
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● Assumption: “the probability 
associated with the predicted class 
label should reflect its ground truth 
correctness likelihood.”

● Reality: “modern [large] neural 
networks are no longer 
well-calibrated”

● Solution: apply temperature scaling 
(extension of Platt scaling) on model 
outputs

On Calibration of Modern Neural Networks (Weinberger et al., 2017)

https://en.wikipedia.org/wiki/Platt_scaling
https://arxiv.org/abs/1706.04599


Confident learning (CL)
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● Learn calibrated joint distribution (cleanlab) between noisy & true 
labels to identify mislabeled samples

Confident Learning: Estimating Uncertainty in Dataset Labels (Chuang et al., 2019)

I use specific functions from the package since I already have 
my noisy labels and their predicted probabilities (view code).

import cleanlab
from cleanlab.util import onehot2int
from cleanlab.pruning import get_noise_indices

# Format our noisy labels `s` (cleanlab expects list of 
integers for multilabel tasks)
correctly_formatted_labels = onehot2int(y_test)

# Determine potential labeling errors
label_error_indices = get_noise_indices(
            s=correctly_formatted_labels,
            psx=y_prob,
            multi_label=True,
            sorted_index_method="self_confidence",
            verbose=0)

https://arxiv.org/abs/1911.00068
https://github.com/cleanlab/cleanlab
https://labelerrors.com/
https://arxiv.org/abs/1911.00068
https://madewithml.com/courses/mlops/evaluation/#calibration


Manual slices
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● Besides fine-grained class metrics, there may be key slices (subsets) of 
our data that we’ll want to evaluate.
○ Target / predicted classes (+ combinations)
○ Features (explicit and implicit)
○ Metadata (timestamps, sources, etc.)
○ Priority slices / experience (minority groups, large customers, etc.)

→ let’s go to the code to programmatically 
create and evaluate these slices!

from snorkel.slicing import PandasSFApplier
from snorkel.slicing import slice_dataframe
from snorkel.slicing import slicing_function

@slicing_function()
def cv_transformers(x):
    """Projects with the `computer-vision` & `transformers` tags."""
    return all(tag in x.tags for tag in ["computer-vision", "transformers"])

@slicing_function()
def short_text(x):
    """Projects with short titles and descriptions."""
    return len(x.text.split()) < 7  # less than 7 words

https://madewithml.com/courses/mlops/evaluation/#manual-slices


Generated slices
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● Can we auto identify relevant slices of data that are problematic?

Automated Data Slicing for Model Validation (Whang et al., 2018)
https://github.com/yeounoh/slicefinder (Chung et al.)

def filter_by_significance(self, slices, reference, 
alpha, max_workers=10)

Identify top-K slices that have at least T samples in 
each slice

def find_slice(self, k=50, epsilon=0.2, alpha=0.05, 
degree=3, risk_control=True, max_workers=1)

Generate slices that are not too big (low comparative loss) 
but also not too small (high loss, low interpretability)

slices = []
for col in X.columns:
    for v in np.unique(X[col]:
        data_idx = X[X[col] == v].index
        s = Slice({col:[[v]]}, data_idx)
        slices.append(s)

Using hypothesis testing for slice finding and reducing 
false discovery

Bin features with high cardinality def binning(self, col, n_bin=20)

def merge_slices(self, slices, reference, epsilon)
Merge smaller, insignificant slices together to create more 
meaningful slices.

https://arxiv.org/abs/1807.06068
https://github.com/yeounoh/slicefinder


Generated slices

22Significant Slice Exploration Design Docs (Whang et. al. 2017)

https://docs.google.com/document/d/1D7DB1POgwWRPXOe2B0tFXFw9-oV-Q9BwuTwHPXLpcuM


Generated slices
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● Using decision trees and lattice searching is +1 on top of clustering but still 
many limitations exist:
○ Sampling to find any k slices that satisfy significance reqs.
○ Can obscure slices with large errors

● SliceLine: pruning + enumeration + lin alg to find the exact top-K slices

SliceLine: Fast, Linear-Algebra-based Slice Finding for ML Model Debugging (Boehm et. al. 2021)

https://mboehm7.github.io/resources/sigmod2021b_sliceline.pdf


Generated slices
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What if the features to generate slices on are implicit/hidden?

Distributionally Robust Neural Networks for Group Shifts (Liang et. al. 2019)

https://arxiv.org/abs/1911.08731


Generated slices

25

What if the features to generate slices 
on are implicit/hidden?

1. Estimate implicit subclass labels via 
unsupervised clustering

2. Train new more robust model using 
these clusters 

No Subclass Left Behind: Fine-Grained Robustness in Coarse-Grained Classification Problems (Re et. al. 2020)

https://arxiv.org/abs/2011.12945


Generated slices
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Can we do better?

1. Learn subgroups
2. Learn transformations (ex. CycleGAN) 

needed to go from one subgroup to 
another under the same superclass 
(label)

3. Augment data with artificially 
introduced subgroup features

4. Train new robust model on 
augmented data

Model Patching: Closing the Subgroup Performance Gap with Data Augmentation (Re et. al. 2020)

https://junyanz.github.io/CycleGAN/
https://arxiv.org/abs/2008.06775


Evaluating evaluations (CI/CD suites)
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● What criteria are most important?
● What criteria cannot regress?
● How much of a regression can be tolerated?
● Add criteria and programmatically enforce via CI/CD workflows

assert precision > prev_precision  # most important, cannot regress
assert recall >= best_prev_recall - 0.03  # recall cannot regress > 3%
assert metrics["class"]["data_augmentation"]["f1"] > prev_data_augmentation_f1  # class
assert metrics["slices"]["class"]["cv_transformers"]["f1"] > prev_cv_transformers_f1  # slice

https://madewithml.com/courses/mlops/cicd/


Testing
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● Evaluation techniques may be model-specific but functional testing is model-agnostic. 
They should work regardless of model architectures or output attributes, etc.

# INVariance via verb injection (changes should not affect outputs)
tokens = ["revolutionized", "disrupted"]
tags = [["transformers"], ["transformers"]]
texts = [f"Transformers have {token} the ML field." for token in tokens]

# DIRectional expectations (changes with known outputs)
tokens = ["PyTorch", "Huggingface"]
tags = [["pytorch", "transformers"],["huggingface", "transformers"]]
texts = [f"A {token} implementation of transformers." for token in tokens]

# Minimum Functionality Tests (simple input/output pairs)
tokens = ["transformers", "graph neural networks"]
tags = [["transformers"], ["graph-neural-networks"]]
texts = [f"{token} have revolutionized machine learning." for token in tokens]

→ view the testing lesson for more!

https://madewithml.com/courses/mlops/testing/#behavioral-testing


Dashboards / documentation

29Model Cards: The value of a shared understanding of AI models (Google)
Metaflow Cards: Integrating Pythonic visual reports into ML pipelines (Outerbounds)

● Need to communicate evaluation findings with the broader team
○ Expose relevant views (ex. dashboard, model cards) for different personas
○ Should reflect reports respective to the currently deployed systems
○ Auto-generated (w/ templates) and deployed with CI/CD workflows

https://modelcards.withgoogle.com/about
https://outerbounds.com/blog/integrating-pythonic-visual-reports-into-ml-pipelines/
https://madewithml.com/courses/mlops/dashboard/
https://modelcards.withgoogle.com/about
https://madewithml.com/courses/mlops/cicd/


Monitoring
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● Components from offline evaluation can be used for online setting but be wary of:
○ cumulative vs. sliding metrics
○ false positives due to data imbalances

● Check out the monitoring lesson for more info!
○ Performance measurements (w/ label lag)
○ Drift (data, target, etc.) location, measurement and mitigation

https://madewithml.com/courses/mlops/monitoring/


Monitoring
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● What can we do if we want to monitor performance in the event of delayed outcomes?
○ Use approximate metrics as an estimate of performance
○ No reliable approximate metrics? → back to slicing!

1. Design slicing functions that 
may capture how our data 
may experience distribution 
shift (don’t need complete 
coverage)

2. Develop slice matrices for 
source and target data

3. Compare matrices to 
approximate performance

Mandoline: Model Evaluation under Distribution Shift (Re et. al. 2021)

https://arxiv.org/abs/2107.00643


Startup ideas
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● Horizontal, generalized, low SME, lots of competition
○ Slice generator based on features, data modality, etc. (no code/low code)
○ Calibrated confidences to discover labeling errors (cleanlab)
○ Evaluation template for various tasks and data modalities given inputs, model, logits, 

labels, predictions, etc.
○ Caution: MANY platforms are working on baking this into larger product

● Specialized, moderate/high SME, industry/task-specific
○ Evaluation suites for products in highly regulated spaces (ex. health, fintech, etc.). Work 

with regulation entities and incumbents to devise fair criteria and thresholds.
○ Controlled and interpretable data augmentation via automatic identification of subgroups 

and patching into data (the more specific the space, the better).

Just a few specific ideas around evaluation but there are many 
other aspects of the ML development lifecycle! 

→ Connect with me on Twitter and LinkedIn

https://twitter.com/GokuMohandas
https://linkedin.com/in/goku
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Machine Learning Systems Design
Next lecture: Deployment

cs329s.stanford.edu | Chip Huyen


