Machine Learning Systems Design
Lecture 7:

Model Evaluation by Goku Mohandas

Evaluation for RecSys by Chloe He

% Stanford

University

CS 329S (Chip Huyen, 2022) | cs329s.stanford.edu

https://twitter.com/GokuMohandas
https://chloe-he.com/

MLOps

| Learn how to apply ML to build a production grade product and deliver value. >
GokuMohandas/MadeWithML

W Purpose Scripting t» Reproducibility
« Product « Packaging o Git
« System design « Organization e Pre-commit
* Project « Logging « Versioning
GOku MOhandaS « Documentation « Docker
@ Data) « Styling i
. « Labeling . Makefile % Production
Founder @ MadeWithML « Preprocessing « Dashboard
« Exploration W Interfaces « CI/CD workflows
Al Researcher @ Apple « Splitting « Command-line « Infrastructure
ML & Product Lead @ an oncology informatics * Bugmentziion = RESTLLARI * Manitanng
. . _ . Feature store
startup (acq. by Invitae) ~/ Modeling Testing . Pipelines
- Baselines « Code g :
« Continual learning
« Evaluation » Data
» Experiment tracking * Models

« Optimization

= Find Goku on Twitter and LinkedIn

https://madewithml.com/
https://twitter.com/GokuMohandas
https://linkedin.com/in/goku

Background

Background in health (informatics, materials, genomics) from Johns Hopkins
ML + health (informatics, time-series, etc.) at Georgia Tech

Co-founded a rideshare analytics app to predict surge locations (HotSpot)
Worked on applied NLP (+ product) at Apple

ML + Product lead at an oncology informatics startup (acquired by Invitae)
Teaching, advising + developing at MadeWithML

Future: back to health as foundations are currently established

Always happy to chat if you need help or working on something cool!
=+ Connect with me on Twitter and LinkedIn

https://madewithml.com/
https://twitter.com/GokuMohandas
https://linkedin.com/in/goku

Agenda

OO0k WN -

1

O O 00

Task, splitting & baselines set up Follow along using

Metrics (coarse/fine-grained) MadeWithML'’s lesson and interactive
Confusion matrix notebook.

Confidence learning (+ calibration)
Manual slices

My take: Evaluation is one of the most
underserved yet critical data-centric

Generated slices (explicit & hidden aspects of ML systems design that
Stratiﬁcation) can enable true reliability and
Evaluating evaluations (CI/CD suite) programmatic iteration.

Testing ML

Evaluation reports (dashboards / cards) @ Stanford
Monitoring ML &) University

Evaluation startup ideas ¢ CS 3295 (Chip Huyen, 2022) | cs329s.stanford.edu

https://madewithml.com/courses/mlops/evaluation/
https://colab.research.google.com/github/GokuMohandas/MLOps/blob/main/notebooks/tagifai.ipynb

Set up

Full set up available at MadeWithML
Skipping most of product and data
topics so we can focus on evaluation

Quickly cover task, splitting and

baselines since they have strong ties

to evaluation

Also cover aspects of testing,
dashboards, CI/CD & monitoring
Jumping b/w code blocks and
content found » here

Stars 25K+ ¥ Community 30K+ J

Made With ML < MLOps Course

W Product ~ Scripting ¢» Reproducibility
+ Objective « Organization « Git
« Solution - Packaging + Pre-commit
« Iteration . Documentation + Versioning
. Logging « Docker
& Data . Styling

« Labeling . Makefile % Production

« Preprocessing » Dashboard
. Exploration @ Interfaces « CI/CD workflows

« Infrastructure

. Splitting . Command-line =
« Augmentation « RESTful API
» Feature store
~ Modeling Testing « Pipelines

. Baselines . Code « Continual learning

focus for today = . Evaluation . Data

- Experiment tracking

« Optimization

https://madewithml.com
https://madewithml.com/courses/mlops/evaluation/

Task

e [Simplified] Predict topic tags (from a specified set of of tags) for a given project (text).

1 # Load projects
2 url = "https://raw.githubusercontent.com/GokuMohandas/MadeWithML/main/datasets
3 projects = json.loads(urlopen(url).read())
4 print (json.dumps(projects[-3085], indent=2))
{
*id": 324;
“title": "AdverTorch",
"description”: "A Toolbox for Adversarial Robustness Research",
“tags": |
"code",
"library",
"security”,

"adversarial-learning"”,
"adversarial-attacks",
"adversarial-perturbations”

Task

Using a project’s text +
description to predict
relevant tags (>30
occurrences).

@widgets.interact(min_tag_freq=(8, tags.most_common()[@][1]))
def separate_tags_by_freq(min_tag_freq=30):
tags_above_freq = Counter(tag for tag in tags.elements()
if tags[tag] >= min_tag_freq)
tags_below_freq = Counter(tag for tag in tags.elements()
if tags[tag] < min_tag_freq)
print ("Most popular tags:\n", tags_above_freq.most_common(5))
print ("\nTags that just made the cut:\n", tags_above_freq.most_common()[-5:])
print ("\nTags that just missed the cut:\n", tags_below_freq.most_common(5))

Most popular tags:
[('natural-language-processing', 429),
('computer-vision', 388),
('pytorch', 258),

('tensorflow', 213),

('transformers', 196)]

Tags that just made the cut:
[('time-series', 34),
'flask', 34),
'node-classification', 33),
question-answering', 32),
pretraining', 30)]

(
(
(
(

Tags that just missed the cut:
[('model-compression', 29),
('fastai', 29),
('graph-classification', 29),
('recurrent-neural-networks', 28),
('adversarial-learning', 28)]
Filter tags that have fewer than <min_tag_freq> occurrences
min_tag_freq = 30
tags_above_freq = Counter(tag for tag in tags.elements()
if tags[tag] >= min_tag_freq)
df.tags = df.tags.apply(filter, include=list(tags_above_freq.keys()))

Splitting

e Offline evaluation can’t be trusted if we don’t properly compose our data splits.

"

) Creating proper data splits

What are the criteria we should focus on to ensure proper data splits?

Show answer v

the dataset (and each data split) should be representative of data we will encounter
equal distributions of output values across all splits
shuffle your data if it's organized in a way that prevents input variance

avoid random shuffles if your task can suffer from data leaks (ex. time-series)

= let’'s go to the codel!

https://madewithml.com/courses/mlops/splitting/#naive-split

Baselines

Fix the data. /lterate on models. Fix the models. Iterate on data.

1. Start with the simplest possible baseline to
compare subsequent development with.
This is often a random (chance) model.

2. Develop a rule-based approach (when incorporate auxiliary datasets
possible) using IFTTT, auxiliary data, etc. identify unique slices to

3. Slowly add complexity by addressing augment/boost
limitations and motivating representations
and model architectures.

4. Weigh tradeoffs (performance, latency,
size, etc.) between performant baselines.

5. Reuvisit and iterate on baselines as your
dataset grows.

remove or fix data samples (FP, FN)
prepare and transform features
expand or consolidate classes

Many are discovered post offline evaluation!

zooming in on performance today =
but there are many aspects to
model evaluation!

@) Tradeoffs to consider

When choosing what model architecture(s) to proceed with, what are important tradeoffs to
consider? And how can we prioritize them?

"

Show answer v

Prioritization of these tradeoffs depends on your context.

performance : consider coarse-grained and fine-grained (ex. per-class) performance.
latency : how quickly does your model respond for inference.

size : how large is your model and can you support it's storage.

compute : how much will it cost ($, carbon footprint, etc.) to train your model?
interpretability : does your model need to explain its predictions?

bias checks : does your model pass key bias checks?

time to develop:how long do you have to develop the first version?

time to retrain:how long does it take to retrain your model? This is very important to
consider if you need to retrain often.

maintenance overhead: who and what will be required to maintain your model versions because
the real work with ML begins after deploying v1. You can't just hand it off to your site reliability
team to maintain it like many teams do with traditional software.

Baselines

e Set your reproducibility components!

o set_seeds()

o get_data_splits(df, train_size=0.7)

O Trainer(object)

train_step(self, dataloader)

eval_step(self, dataloader)

predict_step(self, dataloader)

train(self, num_epochs, patience, train_dataloader, val_dataloader)

e Subset for quick initial runs

Shuffling since projects are chronologically organized
if shuffle:
df = df.sample(frac=1).reset_index(drop=True)
= |let’s go to the code to see the

Subset baseline implementations

if num_samples:
df = df[:num_samples]

11

https://madewithml.com/courses/mlops/baselines/#random

Labels and predictions

Data to evaluate

device = torch.device("cuda")

loss_fn = nn.BCEWithLogitsLoss(weight=class_weights_tensor)

trainer = Trainer(model=model.to(device), device=device, loss_fn=loss_fn)

test_loss, (y_true] (y_prob}=_trainer.eval_step(dataloader=test_dataloader)
y_pred|= np.arra np.where(prob >= 1, 0) for prob in y_prob])

array([(ro., o., 0., ..., 0., 0., 0.7, array([[1.86e-03, 4.90e-03,
0., 0., 1., ..., 0., 0., 0.1, [9.99e-03, 2.12e-03,
[0., 0., O., , 0., 0., 0.7, [5.11e-02, 7.21e-03,
(0., 0., 0., ..., 0., 0., 1.10) [4.84e-02, 9.68e-03,
array([[0O, O, O, ..., O, O, 07,
[OI OI 1/ LR OI OI O]I
[o, o, 1, , 0, 0, 07,
[OI 1/ OI e ey OI Ol O]l
[OI OI OI LR 1/ OI O]I
[OI OI OI e OI OI O]])

w O W

.65e-027],
.34e-037,
.85e-02],

.63e-0111)

12

Coarse-grained metrics

Metrics
metrics = {"overall": {}, "class": {}}

Overall metrics

overall_metrics = precision_recall_fscore_support(y_test, y_pred, average="weighted")
metrics["overall"]["precision"] = overall_metrics[0]

metrics["overall"]["recall"] = overall_metrics[1]
metrics["overall"]["f1"] = overall_metrics[2]
metrics["overall"]["num_samples"] = np.float64(len(y_true))
print (json.dumps(metrics["overall"], indent=4))

(average metrics with class

"precision": 0.7896647806486397, imbalances factored it
"recall": 0.5965665236051502,

"£1": 0.6612830799421741,

"num_samples": 218.0

13

Fine-grained metrics

Per-class metrics
class_metrics = precision_recall_fscore_support(y_test, y_pred, average=None)
for i, _class in enumerate(label_encoder.classes):
metrics["class"][_class] = {
"precision": class_metrics[0][1i],
"recall": class_metrics[1][1i],
"f1": class_metrics[2][1i],
"num_samples": np.float64(class_metrics[3][i]),

metrics calculated for

. L each unique class
Metrics for a specific class

tag = "transformers”
print (json.dumps(metrics["class"][tag], indent=2))

{
"precision”: 0.6428571428571429,

"recall": 0.6428571428571429,
"f1": 0.6428571428571429,
"num_samples": 28.0

Fine-grained metrics

test performance (f1)

Be sure to especially inspect test metrics of classes with low # of samples

Number of samples vs. performance (per class)

f1s = [metrics["class"][_class]["f1"]*100. for _class in label_encoder.classes]
num_samples = np.sum(y_train, axis=0).tolist()

sorted_lists = sorted(zip(*[num_samples, f1s]))

num_samples, f1s = list(zip(*sorted_lists))

100

time-series
unsupervised-leaming

tensorflow-js transformers

self-supervised-leamini

50 100 150 200 250

300
of training samples

15

Confusion matrix

True positives (TP): prediction = ground-truth

= learn about where our model performs well.

False positives (FP): falsely predict sample
belongs to class
= identify potentially mislabeled samples.

False negatives (FN): falsely predict sample
does not belong to class

= identify the model's less performant areas
to boost later.

Tip: we should have a scaled version that's tied to labeling
and sampling workflows so we can act on our findings
from this view.

False positives

topic modeling bert leveraging transformers class based tf idf create
easily interpretable topics

True
M
0 : "attention"
1 : "huggingface"
2 : "natural-language-processing"

3 : "transformers"

]

Predicted

0 : "attention"

1 : "interpretability"

2 : "natural-language-processing"
3

: "transformers"

=+ |let’s go to the code to identify these subsets!

16

https://madewithml.com/courses/mlops/evaluation/#confusion-matrix

Confidence learning

e Inspect probabilities instead of predicted labels
e Categorical
o prediction is incorrect (also indicate TN, FP, FN)
o confidence score for the correct class is below a
threshold
o confidence score for an incorrect class is above
a threshold
o standard deviation of confidence scores over
top N samples is low
o different predictions from same model using
different/previous parameters
e Continuous
o difference between predicted and ground-truth
values is above some %

Confidence score for the incorrect class is
above a threshold
high_confidence = []
max_threshold = 6.2
for i in range(len(y_test)):
indices = np.where(y_test[i]==0)[0]
probs = y_prob[i][indices]
classes = []
for index in
np.where(probs>=max_threshold)[0]:

classes.append(label_encoder.index_to_class[i
ndices[index]])
if len(classes):
high_confidence.append({"text":
test_df.text[i], "classes": classes})

17

Calibration

e Assumption: “the probability - TCIFAR 100 NOIFAR 100
associated with the predicted class .08 §::§‘ g?: §:
label should reflect its ground truth % 0.6 %::E g: %:
correctness likelihood.” G 04 ;:: : ;:

LY I o

e Reality: “modern [large] neural I a— .
networks are no /onger 1.00.0 0.2 04 06 08 1.0 0.0 0.2 04 06 0.8 1.0
well-calibrated” 0.8 ; g:;puts = g:;puts

2

e Solution: apply temperature scaling § zz

(extension of Platt scaling) on model . 0:2

outputs 0.0

Error=44.9

0.0 02 04 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
Confidence

On Calibration of Modern Neural Networks (Weinberger et al., 2017)

18

https://en.wikipedia.org/wiki/Platt_scaling
https://arxiv.org/abs/1706.04599

Confident learning (CL)

e Learn calibrated joint distribution (cleanlab) between noisy & true

labels to identify mislabeled samples

NOiS)' Data, X Cy.y' y'=dog | y'=fox| y*=cow
~\n d n
(x,7)" € (R, Z,,) 9-dog| 100 | 40 | 20
M 0 del, 0 ¥ 56 60 0
32 12 80
Noisy Predicted {lorma[lllﬁe rows
A 0 matcl or
Probs, p (¥; x, 6) & divid b';:otal
:I.Il.ll.! lllllllllllllllllllllll : . y’_dog y'—ﬁk\’ y'-mw
Noisy inputs 025 | 0.1 | 0.05
B.nfident] - = 014 | 015 | 0
onfident Joint, Cy - 5 o
Estimate of Joint, 0 ;y/——y:m’.: 0.08 | 0.03 | 0.2
: Dirty Data
Prune . (Examples with)
....... Cleanlab Label Issues
Clean Data

| use specific functions from the package since | already have
my noisy labels and their predicted probabilities (view code).

import cleanlab
from cleanlab.util import onehot2int
from cleanlab.pruning import get_noise_indices

Format our noisy labels ‘s’ (cleanlab expects list of
integers for multilabel tasks)
correctly_formatted_labels = onehot2int(y_test)

Determine potential labeling errors
label_error_indices = get_noise_indices(
s=correctly_formatted_labels,
psx=y_prob,
multi_label=True,
sorted_index_method="self_confidence",
verbose=0)

Confident Learning: Estimating Uncertainty in Dataset Labels (Chuang et al., 2019)

https://arxiv.org/abs/1911.00068
https://github.com/cleanlab/cleanlab
https://labelerrors.com/
https://arxiv.org/abs/1911.00068
https://madewithml.com/courses/mlops/evaluation/#calibration

Manual slices

e Besides fine-grained class metrics, there may be key slices (subsets) of

our data that we’ll want to evaluate.

o Target/ predicted classes (+ combinations)

Features (explicit and implicit)

O
o Metadata (timestamps, sources, etc.)
o Priority slices / experience (minority groups, large customers, etc.)

from snorkel.slicing import PandasSFApplier
from snorkel.slicing import slice_dataframe
from snorkel.slicing import slicing_function

@slicing_function()
def cv_transformers(x):
"""Projects with the ‘computer-vision' & ‘transformers’

return all(tag in x.tags for tag in ["computer-vision",

@slicing_function()

def short_text(x):
"""Projects with short titles and descriptions."""
return len(x.text.split()) < 7 # less than 7 words

tags. """
"transformers"])

= |et’s go to the code to programmatically
create and evaluate these slices!

20

https://madewithml.com/courses/mlops/evaluation/#manual-slices

Generated slices

e Can we auto identify relevant slices of data that are problematic?

Identify top-K slices that have at least T samples in
each slice

def find_slice(self, k=50, epsilon=0.2, alpha=0.05,
degree=3, risk_control=True, max_workers=1)

Bin features with high cardinality def binning(self, col, n_bin=20)

slices = []
for col in X.columns:
for v in np.unique(X[col]:
data_idx = X[X[col] == v].index
s = Slice({col:[[v]]}, data_idx)
slices.append(s)

Generate slices that are not too big (low comparative loss)
but also not too small (high loss, low interpretability)

Merge smaller, insignificant slices together to create more
. . def merge_slices(self, slices, reference, epsilon)
meaningful slices.

Using hypothesis testing for slice finding and reducing
false discovery

def filter_by_significance(self, slices, reference,

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| alpha, max_workers=10)
|

Automated Data Slicing for Model Validation (Whang et al., 2018)
https://github.com/yeounoh/slicefinder (Chung et al.)

https://arxiv.org/abs/1807.06068
https://github.com/yeounoh/slicefinder

Generated slices

Receiv

ed 175 rows from dremel.

Slice Overview

0.7 +

06

05

024

014

0.7 4
06 3
053
04
03 3
024
014

t t t t
2000 4000 6000 8000
Slice weight

Slice Anomaly Testing

t
10000

Slice

education_num_x_relationship...

education_x_marital_status:B...

~

education_x_relationship:Bach...

age_x_education:[38.900000,...

IS

age_x_education:[31.600000,...

5 | education_num_x_occupation:...

education_x_occupation:Bach...

education_x_native_country:B.

~

o

education_x_education_num:...

education:Bachelors

1

education_num_x_occupation:

11 capital_loss_x_education:[0.0...

N

capital_gain_x_education:[0.0.

education_x_hours_per_wee!

14 | education_x_marital_status:M.

age_x_education_num:[38.90...

&

education_x_native_country:...

17 | capital_loss_x_education:[0.

53

education: Masters

Confidence Interval

Weight
3070
2768
2433
1201
1145
1870
1369
4766
5355
5355
1029
5019
5117
2648
1003
1724
1527
1577
1723

Log Loss
0.6686333558600267
0.6555037841686089
0.6436002667909259
0.6017001429598788
0.5810290678740502
0.5742113018011095
0.5511045693397273
0.5249141257193968
0.524386525034093
0.524386525034093
0.5229504503654301
0.5191179623195775
0.5087792044857011
0.4776779370519788
0.6258045912551992
0.6006635889958015
0.5997813410598055
0.5971973597450738
0.5959963434245633

Calibration
0.9165924278926173
0.8267763341533528
0.8426198541828379
0.8409174123580909
0.8482403478625676
0.7820396842281266
0.8464060579265189
0.872142941332496
0.903732774192983
0.903732774192983
0.9275708613679448
0.9306165070928877
0.9548068873644355
0.9959152150783132
0.7321253631466119
0.8044445826594409
0.7199830172054349
0.767394003346034
0.7493849892918957

Avg. Labe
0.43680781758957654
0.6701589595375722

0.676531031648171

0.5403830141548709
0.4820960698689956
0.6155080213903743
0.5690284879474069
0.42299622324800673
0.4147525676937442
0.4147525676937442
0.3654033041788144
0.39748953974895396
0.38772718389681454
0.35158610271903323
0.7716849451645065
0.5568445475638051
0.5671250818598559
0.5364616360177552
0.5565873476494486

Avg. Prediction
0.4003747380469055
0.554071567866499
0.5700584792375467
0.4544174859453796
0.40893333800885356
0.4813516986880073
0.48162915933145234
0.36891317031605375
0.37482548860553044
0.37482548860553044
0.338937457603836
0.36991032708713106
0.3702045856030956
0.35014994910797187
0.5649701207133376
0.4479505796711503
0.4083204275703383
0.41167744250522814
0.4170982035582867

Significant Slice Exploration Design Docs (Whang et. al. 2017)

22

https://docs.google.com/document/d/1D7DB1POgwWRPXOe2B0tFXFw9-oV-Q9BwuTwHPXLpcuM

Generated slices

e Using decision trees and lattice searching is +1 on top of clustering but still
many limitations exist:
o Sampling to find any k slices that satisfy significance regs.
o Can obscure slices with large errors
e Sliceline: pruning + enumeration + lin alg to find the exact top-K slices

11100 e
@0 0111 Candidate Slice
X (S}=n, se=e) 1020100 “Slicess Results R
eo1leje1
Level 1:
; 10001112001 001000
(1in, 3 out) 10001/ (112001 001000
[eT1e0] (100221 000100
Level 2: D;‘(ta To0001(112001|-L) mmp (001000 mEp
(2in, 2 out) e1010/ 010121 000010
[e11ee]|1ee2]11 000100
Level 3: 16001 (112001 001000 sc se sm ss
(3 1in, 1 out)

Figure 2: Example Vectorized Slice Evaluation (The matrix X
has two red/black features, with 2/3 distinct values. The matrix
multiplication (X ©® ST) evaluates predicates by multiplying the
Figure 1: Example Lattice and Slice Properties. one-hot vectors and counting matching predicates. By checking for
(X @ ST) = L), we get rows that match all L slice predicates).

|S| = min(|S| parents)

Level m: se = min(se parents)

SliceLine: Fast, Linear-Algebra-based Slice Finding for ML Model Debugging (Boehm et. al. 2021) 23

https://mboehm7.github.io/resources/sigmod2021b_sliceline.pdf

Generated slices

What if the features to generate slices on are implicit/hidden?

Common training examples Test examples

y: waterbird y: landbird y: waterbird

a: water a: land a: land
Waterbirds background background background

y: blond hair LUK WL y: blond hair

a: female a: male
CelebA

y: contradiction y: entailment y: entailment

a: has negation a: no negation a: has negation
MultiNLI (P) The economy (P) Read for Slate's take (P) There was silence

could be still better. on Jackson's findings. for a moment.

(H) The economy has (H) Slate had an opinion (H) There was a short period

never been better. on Jackson's findings. of time where no one spoke.

Figure 1: Representative training and test examples for the datasets we consider. The correlation
between the label y and the spurious attribute a at training time does not hold at test time.

Distributionally Robust Neural Networks for Group Shifts (Liang et. al. 2019)

24

https://arxiv.org/abs/1911.08731

Generated slices

What if the features to generate slices
on are implicit/hidden?

o
o
o
1. Estimate implicit subclass labels via p
. . U,
unsupervised clustering o
. . w
2. Train new more robust model using 5
these clusters
Superclass labels Data Z > R
» Dlmensmnahty-
B | reduce
activations

No Patch

« No Patch
« Patch

Cluster

) | reduced |mp

features

’ Train robust
NN model

No Subclass Left Behind: Fine-Grained Robustness in Coarse-Grained Classification Problems (Re et. al. 2020)

25

https://arxiv.org/abs/2011.12945

Generated slices

Can we do better?

1. Learn subgroups

2. Learn transformations (ex. CycleGAN)
needed to go from one subgroup to
another under the same superclass
(label)

3. Augment data with artificially
introduced subgroup features

4. Train new robust model on
augmented data

| Subgroup: colored spot vanilla model model patching

o

Figure 1: A vanilla model trained on a skin cancer
dataset exhibits a subgroup performance gap between
images of malignant cancers with and without col-
ored bandages. GradCAM [70] illustrates that the
vanilla model spuriously associates the colored spot
with benign skin lesions. With model patching, the
malignancy is predicted correctly for both subgroups.

Model Patching: Closing the Subgroup Performance Gap with Data Augmentation (Re et. al. 2020)

https://junyanz.github.io/CycleGAN/
https://arxiv.org/abs/2008.06775

Evaluating evaluations (CI/CD suites)

What criteria are most important?

What criteria cannot regress?

How much of a regression can be tolerated?

Add criteria and programmatically enforce via CI/CD workflows

assert precision > prev_precision # most important, cannot regress

assert recall >= best_prev_recall - 6.03 # recall cannot regress > 3%

assert metrics["class"]["data_augmentation"]["f1"] > prev_data_augmentation_f1 # class
assert metrics["slices"]["class"]["cv_transformers"]["f1"] > prev_cv_transformers_f1 # slice

27

https://madewithml.com/courses/mlops/cicd/

Testing

e FEvaluation techniques may be model-specific but functional testing is model-agnostic.
They should work regardless of model architectures or output attributes, etc.

INVariance via verb injection (changes should not affect outputs)
tokens = ["revolutionized", "disrupted"]

tags = [["transformers"], ["transformers"]]

texts = [f"Transformers have {token} the ML field." for token in tokens]

DIRectional expectations (changes with known outputs)

tokens = ["PyTorch", "Huggingface"]

tags = [["pytorch", "transformers"],["huggingface", "transformers"]]

texts = [f"A {token} implementation of transformers." for token in tokens]

Minimum Functionality Tests (simple input/output pairs)

tokens = ["transformers”, "graph neural networks"]

tags = [["transformers"], ["graph-neural-networks"]]

texts = [f"{token} have revolutionized machine learning." for token in tokens]

= view the testing lesson for more!

28

https://madewithml.com/courses/mlops/testing/#behavioral-testing

Dashboards / documentation

e Need to communicate evaluation findings with the broader team
Expose relevant views (ex. dashboard, model cards) for different personas
Should reflect reports respective to the currently deployed systems

(@]

(@]

(@]

Annotation

We want to determine what the minimum tag frequency is so that we have enough samples per

tag for training.

min_tag_freq

25
—_— 9
1
Most common tags:

('natural-language-

processing', 424)
('computer-vision', 388)
('pytorch', 258)
('tensorflow', 213)

('transformers', 196)

Tags that just made the cut:
('streamlit', 27)

('exploratory-data-

analysis', 27)
('graph-clustering', 27)
('graph-embedding', 26)

('semi-supervised-

learning', 25)

100
Tags that just missed the cut:

('text-classification’,

24)

('linear-regression',
24)

('graph-convolutional-
networks', 23)

('named-entity-

recognition', 23)

('classification', 22)

Auto-generated (w/ templates) and deployed with CI/CD workflows

Performance
overall.precision

0.87 0.57 0.86

4003 ¥ -0.03 10.05

overall.recall slices.overalLfl

Performance
Production Local

e | ha |

¥ "overall" : {

‘

"overall" : {
"precision” :
0.843033473244977

"precision” :
0.873033473244977
"recall" : 0.597872340425532 "recall" : 0.5678723404255319
"f1" : 0.6821603372348584 "f1" : 0.6821603372348584

"num_samples" : 217 "num_samples" : 217

))
b "class" : {...} » "class" : {...}
» "glices" : {...} b "slices" : {...}

))

Differences

b b

Parameters

False positives

Select a page:

Data

Performance
© Inference

Inspection

topic modeling bert leveraging transformers class based tf idf create dense clustel

easily interpretable topics

True
T
0 : "attention”
1 : "huggingface"
2 : "natural-language-processing"
3 : "transformers"
1
Predicted
ol
0 : "attention"
1 : "interpretability"
2 : "natural-language-processing"
3 : "transformers"
]

Model Cards: The value of a shared

understanding of Al models (Google)

Metaflow Cards: Integrating Pythonic visual reports into ML pipelines (Outerbounds)

29

https://modelcards.withgoogle.com/about
https://outerbounds.com/blog/integrating-pythonic-visual-reports-into-ml-pipelines/
https://madewithml.com/courses/mlops/dashboard/
https://modelcards.withgoogle.com/about
https://madewithml.com/courses/mlops/cicd/

Monitoring

e Components from offline evaluation can be used for online setting but be wary of:
o cumulative vs. sliding metrics
o false positives due to data imbalances
e Check out the monitoring lesson for more info!
o Performance measurements (w/ label lag)
o Drift (data, target, etc.) location, measurement and mitigation

30

https://madewithml.com/courses/mlops/monitoring/

Monitoring

e What can we do if we want to monitor performance in the event of delayed outcomes?
o Use approximate metrics as an estimate of performance
o No reliable approximate metrics? » back to slicing!

1. Design slicing functions that Noisy Shices
| adore ice-cream. - [: .
may Captu re how our data (Lsaol:lerI(::l] L.I :OkaI'CE cre::b - }: 1 : 1 I 1 } : [v;zﬁ?ati!:;l ma!z:;::un st;':;i::;tel:;znt
. o . o oved walking on the beac = = -
may experience distribution Validation not. n't fie. ir 1 love, adore

Shift (don’t need Complete Set .dicin'tliked:inkingcoffee]| 1 | 1 | -1 I P $ |

cove rage) @ Labeled (positive) O Labeled (negative) ’ Source Accuracy: 91%)
2. i i [Target] 2 does not love scones.] l 1 | 1 [1 I %

Mandoline

Develop slice matrices for

x —— weighted
source and target data Un!?ebsiled !Ioves taking risks]l -1 | 1 I 1 I-\\ / \ average
3. Compare matrices to Set They like drinking piiot. __J[1 [1] 1] @ PURRORNIS. Y ovse NS

@ Unlabeled (positive] (> Unlabeled (negative) - E\.Ia_r_gée-!l: _A_C_C_U_':a_c_x _i?[_}%_] .

approximate performance

Mandoline: Model Evaluation under Distribution Shift (Re et. al. 2021) 31

https://arxiv.org/abs/2107.00643

Startup ideas

e Horizontal, generalized, low SME, lots of competition
o Slice generator based on features, data modality, etc. (no code/low code)
o Calibrated confidences to discover labeling errors (cleanlab)
o Evaluation template for various tasks and data modalities given inputs, model, logits,
labels, predictions, etc.
o Caution: MANY platforms are working on baking this into larger product
e Specialized, moderate/high SME, industry/task-specific
o Evaluation suites for products in highly regulated spaces (ex. health, fintech, etc.). Work
with regulation entities and incumbents to devise fair criteria and thresholds.
o Controlled and interpretable data augmentation via automatic identification of subgroups
and patching into data (the more specific the space, the better).

Just a few specific ideas around evaluation but there are many
other aspects of the ML development lifecycle!

= Connect with me on Twitter and LinkedIn

32

https://twitter.com/GokuMohandas
https://linkedin.com/in/goku

Machine Learning Systems Design

Next lecture: Deployment

Stanford

i g cs329s.stanford.edu | Chip Huyen
University

33

