
Machine Learning Systems Design
Lecture 7:

Model Evaluation by Goku Mohandas
Evaluation for RecSys by Chloe He

CS 329S (Chip Huyen, 2022) | cs329s.stanford.edu

https://twitter.com/GokuMohandas
https://chloe-he.com/

Goku Mohandas

Founder @ MadeWithML
AI Researcher @ Apple
ML & Product Lead @ an oncology informatics
startup (acq. by Invitae)

→ Find Goku on Twitter and LinkedIn

2

https://madewithml.com/
https://twitter.com/GokuMohandas
https://linkedin.com/in/goku

Background

● Background in health (informatics, materials, genomics) from Johns Hopkins
● ML + health (informatics, time-series, etc.) at Georgia Tech
● Co-founded a rideshare analytics app to predict surge locations (HotSpot)
● Worked on applied NLP (+ product) at Apple
● ML + Product lead at an oncology informatics startup (acquired by Invitae)
● Teaching, advising + developing at MadeWithML
● Future: back to health as foundations are currently established

3

Always happy to chat if you need help or working on something cool!
→ Connect with me on Twitter and LinkedIn

https://madewithml.com/
https://twitter.com/GokuMohandas
https://linkedin.com/in/goku

Agenda
1. Task, splitting & baselines set up
2. Metrics (coarse/fine-grained)
3. Confusion matrix
4. Confidence learning (+ calibration)
5. Manual slices
6. Generated slices (explicit & hidden

stratification)
7. Evaluating evaluations (CI/CD suite)
8. Testing ML
9. Evaluation reports (dashboards / cards)

10. Monitoring ML
11. Evaluation startup ideas 💡

4

My take: Evaluation is one of the most
underserved yet critical data-centric
aspects of ML systems design that
can enable true reliability and
programmatic iteration.

CS 329S (Chip Huyen, 2022) | cs329s.stanford.edu

👉 Follow along using
MadeWithML’s lesson and interactive
notebook.

https://madewithml.com/courses/mlops/evaluation/
https://colab.research.google.com/github/GokuMohandas/MLOps/blob/main/notebooks/tagifai.ipynb

Set up

5

● Full set up available at MadeWithML
● Skipping most of product and data

topics so we can focus on evaluation
● Quickly cover task, splitting and

baselines since they have strong ties
to evaluation

● Also cover aspects of testing,
dashboards, CI/CD & monitoring

● Jumping b/w code blocks and
content found → here

focus for today →

https://madewithml.com
https://madewithml.com/courses/mlops/evaluation/

Task

6

● [Simplified] Predict topic tags (from a specified set of of tags) for a given project (text).

Task

7

● Using a project’s text +
description to predict
relevant tags (>30
occurrences).

@widgets.interact(min_tag_freq=(0, tags.most_common()[0][1]))
def separate_tags_by_freq(min_tag_freq=30):
 tags_above_freq = Counter(tag for tag in tags.elements()
 if tags[tag] >= min_tag_freq)
 tags_below_freq = Counter(tag for tag in tags.elements()
 if tags[tag] < min_tag_freq)
 print ("Most popular tags:\n", tags_above_freq.most_common(5))
 print ("\nTags that just made the cut:\n", tags_above_freq.most_common()[-5:])
 print ("\nTags that just missed the cut:\n", tags_below_freq.most_common(5))

Most popular tags:
 [('natural-language-processing', 429),
 ('computer-vision', 388),
 ('pytorch', 258),
 ('tensorflow', 213),
 ('transformers', 196)]

Tags that just made the cut:
 [('time-series', 34),
 ('flask', 34),
 ('node-classification', 33),
 ('question-answering', 32),
 ('pretraining', 30)]

Tags that just missed the cut:
 [('model-compression', 29),
 ('fastai', 29),
 ('graph-classification', 29),
 ('recurrent-neural-networks', 28),
 ('adversarial-learning', 28)]

Filter tags that have fewer than <min_tag_freq> occurrences
min_tag_freq = 30
tags_above_freq = Counter(tag for tag in tags.elements()
 if tags[tag] >= min_tag_freq)
df.tags = df.tags.apply(filter, include=list(tags_above_freq.keys()))

Splitting

8

● Offline evaluation can’t be trusted if we don’t properly compose our data splits.

→ let’s go to the code!

https://madewithml.com/courses/mlops/splitting/#naive-split

Baselines

9

Fix the data. Iterate on models.

1. Start with the simplest possible baseline to
compare subsequent development with.
This is often a random (chance) model.

2. Develop a rule-based approach (when
possible) using IFTTT, auxiliary data, etc.

3. Slowly add complexity by addressing
limitations and motivating representations
and model architectures.

4. Weigh tradeoffs (performance, latency,
size, etc.) between performant baselines.

5. Revisit and iterate on baselines as your
dataset grows.

Fix the models. Iterate on data.

● remove or fix data samples (FP, FN)
● prepare and transform features
● expand or consolidate classes
● incorporate auxiliary datasets
● identify unique slices to

augment/boost

Many are discovered post offline evaluation!

10

zooming in on performance today →
but there are many aspects to

model evaluation!

Baselines

11

● Set your reproducibility components!
○ set_seeds()
○ get_data_splits(df, train_size=0.7)
○ Trainer(object)

■ train_step(self, dataloader)
■ eval_step(self, dataloader)
■ predict_step(self, dataloader)
■ train(self, num_epochs, patience, train_dataloader, val_dataloader)

● Subset for quick initial runs
Shuffling since projects are chronologically organized
if shuffle:
 df = df.sample(frac=1).reset_index(drop=True)

Subset
if num_samples:
 df = df[:num_samples]

→ let’s go to the code to see the
baseline implementations

https://madewithml.com/courses/mlops/baselines/#random

Labels and predictions

12

Data to evaluate
device = torch.device("cuda")
loss_fn = nn.BCEWithLogitsLoss(weight=class_weights_tensor)
trainer = Trainer(model=model.to(device), device=device, loss_fn=loss_fn)
test_loss, y_true, y_prob = trainer.eval_step(dataloader=test_dataloader)
y_pred = np.array([np.where(prob >= threshold, 1, 0) for prob in y_prob])

array([[0, 0, 0, ..., 0, 0, 0],
 [0, 0, 1, ..., 0, 0, 0],
 [0, 0, 1, ..., 0, 0, 0],
 ...,
 [0, 1, 0, ..., 0, 0, 0],
 [0, 0, 0, ..., 1, 0, 0],
 [0, 0, 0, ..., 0, 0, 0]])

array([[1.86e-03, 4.90e-03, ..., 3.65e-02],
 [9.99e-03, 2.12e-03, ..., 5.34e-03],
 [5.11e-02, 7.21e-03, ..., 3.85e-02],
 ...,
 [4.84e-02, 9.68e-03, ..., 1.63e-01]])

array([[0., 0., 0., ..., 0., 0., 0.],
 [0., 0., 1., ..., 0., 0., 0.],
 [0., 0., 0., ..., 0., 0., 0.],
 ...,
 [0., 0., 0., ..., 0., 0., 1.]])

Coarse-grained metrics

13

Metrics
metrics = {"overall": {}, "class": {}}

Overall metrics
overall_metrics = precision_recall_fscore_support(y_test, y_pred, average="weighted")
metrics["overall"]["precision"] = overall_metrics[0]
metrics["overall"]["recall"] = overall_metrics[1]
metrics["overall"]["f1"] = overall_metrics[2]
metrics["overall"]["num_samples"] = np.float64(len(y_true))
print (json.dumps(metrics["overall"], indent=4))

{
 "precision": 0.7896647806486397,
 "recall": 0.5965665236051502,
 "f1": 0.6612830799421741,
 "num_samples": 218.0

}

average metrics with class
imbalances factored it

Fine-grained metrics

14

metrics calculated for
each unique class

Per-class metrics
class_metrics = precision_recall_fscore_support(y_test, y_pred, average=None)
for i, _class in enumerate(label_encoder.classes):
 metrics["class"][_class] = {
 "precision": class_metrics[0][i],
 "recall": class_metrics[1][i],
 "f1": class_metrics[2][i],
 "num_samples": np.float64(class_metrics[3][i]),
 }

Metrics for a specific class
tag = "transformers"
print (json.dumps(metrics["class"][tag], indent=2))

{
 "precision": 0.6428571428571429,
 "recall": 0.6428571428571429,
 "f1": 0.6428571428571429,
 "num_samples": 28.0

}

Fine-grained metrics

15

● Be sure to especially inspect test metrics of classes with low # of samples

Number of samples vs. performance (per class)
f1s = [metrics["class"][_class]["f1"]*100. for _class in label_encoder.classes]
num_samples = np.sum(y_train, axis=0).tolist()
sorted_lists = sorted(zip(*[num_samples, f1s]))
num_samples, f1s = list(zip(*sorted_lists))

Confusion matrix

16

● True positives (TP): prediction = ground-truth

● False positives (FP): falsely predict sample
belongs to class

● False negatives (FN): falsely predict sample
does not belong to class

→ learn about where our model performs well.

→ identify potentially mislabeled samples.

→ identify the model's less performant areas
to boost later.

→ let’s go to the code to identify these subsets!

Tip: we should have a scaled version that's tied to labeling
and sampling workflows so we can act on our findings
from this view.

https://madewithml.com/courses/mlops/evaluation/#confusion-matrix

Confidence learning

17

● Inspect probabilities instead of predicted labels
● Categorical

○ prediction is incorrect (also indicate TN, FP, FN)
○ confidence score for the correct class is below a

threshold
○ confidence score for an incorrect class is above

a threshold
○ standard deviation of confidence scores over

top N samples is low
○ different predictions from same model using

different/previous parameters
● Continuous

○ difference between predicted and ground-truth
values is above some %

Confidence score for the incorrect class is
above a threshold
high_confidence = []
max_threshold = 0.2
for i in range(len(y_test)):
 indices = np.where(y_test[i]==0)[0]
 probs = y_prob[i][indices]
 classes = []
 for index in
np.where(probs>=max_threshold)[0]:

classes.append(label_encoder.index_to_class[i
ndices[index]])
 if len(classes):
 high_confidence.append({"text":
test_df.text[i], "classes": classes})

Calibration

18

● Assumption: “the probability
associated with the predicted class
label should reflect its ground truth
correctness likelihood.”

● Reality: “modern [large] neural
networks are no longer
well-calibrated”

● Solution: apply temperature scaling
(extension of Platt scaling) on model
outputs

On Calibration of Modern Neural Networks (Weinberger et al., 2017)

https://en.wikipedia.org/wiki/Platt_scaling
https://arxiv.org/abs/1706.04599

Confident learning (CL)

19

● Learn calibrated joint distribution (cleanlab) between noisy & true
labels to identify mislabeled samples

Confident Learning: Estimating Uncertainty in Dataset Labels (Chuang et al., 2019)

I use specific functions from the package since I already have
my noisy labels and their predicted probabilities (view code).

import cleanlab
from cleanlab.util import onehot2int
from cleanlab.pruning import get_noise_indices

Format our noisy labels `s` (cleanlab expects list of
integers for multilabel tasks)
correctly_formatted_labels = onehot2int(y_test)

Determine potential labeling errors
label_error_indices = get_noise_indices(
 s=correctly_formatted_labels,
 psx=y_prob,
 multi_label=True,
 sorted_index_method="self_confidence",
 verbose=0)

https://arxiv.org/abs/1911.00068
https://github.com/cleanlab/cleanlab
https://labelerrors.com/
https://arxiv.org/abs/1911.00068
https://madewithml.com/courses/mlops/evaluation/#calibration

Manual slices

20

● Besides fine-grained class metrics, there may be key slices (subsets) of
our data that we’ll want to evaluate.
○ Target / predicted classes (+ combinations)
○ Features (explicit and implicit)
○ Metadata (timestamps, sources, etc.)
○ Priority slices / experience (minority groups, large customers, etc.)

→ let’s go to the code to programmatically
create and evaluate these slices!

from snorkel.slicing import PandasSFApplier
from snorkel.slicing import slice_dataframe
from snorkel.slicing import slicing_function

@slicing_function()
def cv_transformers(x):
 """Projects with the `computer-vision` & `transformers` tags."""
 return all(tag in x.tags for tag in ["computer-vision", "transformers"])

@slicing_function()
def short_text(x):
 """Projects with short titles and descriptions."""
 return len(x.text.split()) < 7 # less than 7 words

https://madewithml.com/courses/mlops/evaluation/#manual-slices

Generated slices

21

● Can we auto identify relevant slices of data that are problematic?

Automated Data Slicing for Model Validation (Whang et al., 2018)
https://github.com/yeounoh/slicefinder (Chung et al.)

def filter_by_significance(self, slices, reference,
alpha, max_workers=10)

Identify top-K slices that have at least T samples in
each slice

def find_slice(self, k=50, epsilon=0.2, alpha=0.05,
degree=3, risk_control=True, max_workers=1)

Generate slices that are not too big (low comparative loss)
but also not too small (high loss, low interpretability)

slices = []
for col in X.columns:
 for v in np.unique(X[col]:
 data_idx = X[X[col] == v].index
 s = Slice({col:[[v]]}, data_idx)
 slices.append(s)

Using hypothesis testing for slice finding and reducing
false discovery

Bin features with high cardinality def binning(self, col, n_bin=20)

def merge_slices(self, slices, reference, epsilon)
Merge smaller, insignificant slices together to create more
meaningful slices.

https://arxiv.org/abs/1807.06068
https://github.com/yeounoh/slicefinder

Generated slices

22Significant Slice Exploration Design Docs (Whang et. al. 2017)

https://docs.google.com/document/d/1D7DB1POgwWRPXOe2B0tFXFw9-oV-Q9BwuTwHPXLpcuM

Generated slices

23

● Using decision trees and lattice searching is +1 on top of clustering but still
many limitations exist:
○ Sampling to find any k slices that satisfy significance reqs.
○ Can obscure slices with large errors

● SliceLine: pruning + enumeration + lin alg to find the exact top-K slices

SliceLine: Fast, Linear-Algebra-based Slice Finding for ML Model Debugging (Boehm et. al. 2021)

https://mboehm7.github.io/resources/sigmod2021b_sliceline.pdf

Generated slices

24

What if the features to generate slices on are implicit/hidden?

Distributionally Robust Neural Networks for Group Shifts (Liang et. al. 2019)

https://arxiv.org/abs/1911.08731

Generated slices

25

What if the features to generate slices
on are implicit/hidden?

1. Estimate implicit subclass labels via
unsupervised clustering

2. Train new more robust model using
these clusters

No Subclass Left Behind: Fine-Grained Robustness in Coarse-Grained Classification Problems (Re et. al. 2020)

https://arxiv.org/abs/2011.12945

Generated slices

26

Can we do better?

1. Learn subgroups
2. Learn transformations (ex. CycleGAN)

needed to go from one subgroup to
another under the same superclass
(label)

3. Augment data with artificially
introduced subgroup features

4. Train new robust model on
augmented data

Model Patching: Closing the Subgroup Performance Gap with Data Augmentation (Re et. al. 2020)

https://junyanz.github.io/CycleGAN/
https://arxiv.org/abs/2008.06775

Evaluating evaluations (CI/CD suites)

27

● What criteria are most important?
● What criteria cannot regress?
● How much of a regression can be tolerated?
● Add criteria and programmatically enforce via CI/CD workflows

assert precision > prev_precision # most important, cannot regress
assert recall >= best_prev_recall - 0.03 # recall cannot regress > 3%
assert metrics["class"]["data_augmentation"]["f1"] > prev_data_augmentation_f1 # class
assert metrics["slices"]["class"]["cv_transformers"]["f1"] > prev_cv_transformers_f1 # slice

https://madewithml.com/courses/mlops/cicd/

Testing

28

● Evaluation techniques may be model-specific but functional testing is model-agnostic.
They should work regardless of model architectures or output attributes, etc.

INVariance via verb injection (changes should not affect outputs)
tokens = ["revolutionized", "disrupted"]
tags = [["transformers"], ["transformers"]]
texts = [f"Transformers have {token} the ML field." for token in tokens]

DIRectional expectations (changes with known outputs)
tokens = ["PyTorch", "Huggingface"]
tags = [["pytorch", "transformers"],["huggingface", "transformers"]]
texts = [f"A {token} implementation of transformers." for token in tokens]

Minimum Functionality Tests (simple input/output pairs)
tokens = ["transformers", "graph neural networks"]
tags = [["transformers"], ["graph-neural-networks"]]
texts = [f"{token} have revolutionized machine learning." for token in tokens]

→ view the testing lesson for more!

https://madewithml.com/courses/mlops/testing/#behavioral-testing

Dashboards / documentation

29Model Cards: The value of a shared understanding of AI models (Google)
Metaflow Cards: Integrating Pythonic visual reports into ML pipelines (Outerbounds)

● Need to communicate evaluation findings with the broader team
○ Expose relevant views (ex. dashboard, model cards) for different personas
○ Should reflect reports respective to the currently deployed systems
○ Auto-generated (w/ templates) and deployed with CI/CD workflows

https://modelcards.withgoogle.com/about
https://outerbounds.com/blog/integrating-pythonic-visual-reports-into-ml-pipelines/
https://madewithml.com/courses/mlops/dashboard/
https://modelcards.withgoogle.com/about
https://madewithml.com/courses/mlops/cicd/

Monitoring

30

● Components from offline evaluation can be used for online setting but be wary of:
○ cumulative vs. sliding metrics
○ false positives due to data imbalances

● Check out the monitoring lesson for more info!
○ Performance measurements (w/ label lag)
○ Drift (data, target, etc.) location, measurement and mitigation

https://madewithml.com/courses/mlops/monitoring/

Monitoring

31

● What can we do if we want to monitor performance in the event of delayed outcomes?
○ Use approximate metrics as an estimate of performance
○ No reliable approximate metrics? → back to slicing!

1. Design slicing functions that
may capture how our data
may experience distribution
shift (don’t need complete
coverage)

2. Develop slice matrices for
source and target data

3. Compare matrices to
approximate performance

Mandoline: Model Evaluation under Distribution Shift (Re et. al. 2021)

https://arxiv.org/abs/2107.00643

Startup ideas

32

● Horizontal, generalized, low SME, lots of competition
○ Slice generator based on features, data modality, etc. (no code/low code)
○ Calibrated confidences to discover labeling errors (cleanlab)
○ Evaluation template for various tasks and data modalities given inputs, model, logits,

labels, predictions, etc.
○ Caution: MANY platforms are working on baking this into larger product

● Specialized, moderate/high SME, industry/task-specific
○ Evaluation suites for products in highly regulated spaces (ex. health, fintech, etc.). Work

with regulation entities and incumbents to devise fair criteria and thresholds.
○ Controlled and interpretable data augmentation via automatic identification of subgroups

and patching into data (the more specific the space, the better).

Just a few specific ideas around evaluation but there are many
other aspects of the ML development lifecycle!

→ Connect with me on Twitter and LinkedIn

https://twitter.com/GokuMohandas
https://linkedin.com/in/goku

33

Machine Learning Systems Design
Next lecture: Deployment

cs329s.stanford.edu | Chip Huyen

