NOvA Masterclass

QuarkNET Educational Discussions, February 8th, 2023

Mike Plucinski
Neutrino Fellow, QuarkNET
Physics, Engineering, Computer Science Teacher,
Providence Academy, Plymouth, MN
michael.plucinski@gmail.com

International Masterclasses

- IPPOG and QuarkNET Supported
- Modeled After Arts Masterclasses
- Students become "Particle Physicists for a Day"
 - Do a Particle Physics Data Analysis Activity
 - Do the Activity in the Presence of Physics Masters (Physicists from Local Universities)
- Data is Real, from Actual Physics Experiments
- Data Analysis Activity Mirrors Actual Physics Analysis
- Ends with a Video Conference, Connecting Students to a Particle Physics
 Research Lab & Physicist
 - Discuss Analysis from the Activity, Connect with a Physicist!

https://physicsmasterclasses.org

Neutrino Based Masterclasses - MINERvA

MINERVA

- Big Fan
- Momentum & Energy Data
 Collected, Histogramed
- Results...
 - Verified Beam Energy
 - Showcased Indirect Measurement of the Carbon Target Nucleus

However

 Not Much Learned About the Neutrino Itself

Enter NOvA Masterclass

- Masterclass Proposed and Developed by...
 - Dr. Greg Pawlowski
 - Associate Professor, University of Minnesota
 - Neutrino Physicist

- Further Developed by...
 - Shane Wood
 - QuarkNET Staff Member
 - Irondale School District, Newbrighton, MN

- Further Developed by...
 - Mike Plucinski
 - QuarkNET Neutrino Fellow
 - Physics & Engineering Teacher

NOvA Masterclass

- Student Analysis of Neutrino Events from the NOvA Experiment
- Results to Highlight a Neutrino Property Oscillation
- Includes Python Coding in Part 2 of the Analysis

NOvA Experiment

Far Detector

Near Detector

NOvA Detectors

A NOvA cell

4 cm × 6 cm

Near Detector

Neutrino Reminders

What about the neutrinos

3 Flavors of Neutrinos

- Electron
- Muon
- Tau

How they're different

No electric or color charge No EM or strong interactions

Extremely tiny mass

At least a million times less massive than an electron

Neutrino Events - 2 Types

Charged Current Interaction

- W+ Boson Mediated
- Can Tell the Type (Muon)

Neutral Current Interaction

- Z Boson Mediated
- All Types Look the Same

Analysis Goal: Find the Ratio of Charged Current Events to Total Events

Is this Ratio the Same for the Far and Near Detectors?

NOvA Far Detector - Event Ratio

Charged Current Interaction

- W+ Boson Mediated
- Can Tell the Type (Muon)

Charged Current Interaction

6 Far Detector Events

Neutral Current Interaction

- Z Boson Mediated
- All Types Look the Same

Neutral Current Interaction

40 Far Detector Events

Far Detector Ratio: 6 / 46 = 0.13

Analysis Work By the Students - Far Detector Events

Charged Current Interaction

- W+ Boson Mediated
- Can Tell the Type (Muon)

Analysis Task: Measure & Record Length of the Longest Track from Each Event

Neutral Current Interaction

- Z Boson Mediated
- All Types Look the Same

Far Detector Track Length Results

Analysis Task: Establish a "length" to Distinguish Between Charged & Neutral

Move from Far Detector to Near Detector

Near Detector

- Many Events
 - From 46 to Over 6000
- Events are Mixed
 - Far: Given C vs N
 - Near: Mix of C and N
- Cannot Manually Analyze
 - Bring in Coding
 - Use the Length Value from Far Analysis to Differentiate C vs N

Google Colaboratory

- Jupyter Notebook
- Cloud Based
- Google Drive Extension
 - Google Apps Access
 - Sharing, Collaborative Editing (at Least in Separate Blocks)
 - Organized Within Google Drive
- No Local Install Runs in Any Web Browser...Device Independent
 - Phone/Tablet Not Recommended if Editing

- Code Snippets, Not Mastery
 - Early Setup Blocks & Force In-Line Editing
 - Later Separate "Sample Blocks"
 Document for Reference...May Setup
 Empty Cells with a Comment for
 Guidance
- Playground Mode
 - Work/Play in a Document, Without Changing the Original

Coding

To-Be Completed

13 print("Packages Imported!")

Basic Math to Get Started

First, just to become familiar with math in Python, let

[] 1 # Calculate the Muon Neutrino Event Rat
2 farNuMuEvents = 19 # Update this value
3 farNCEvents = 2319 # Update this value
4 farNuMuEventRatio = # Setup a math
5 farNuMuEventRatio # A call to the var

Document Goal

While the above block introduced some math in Pyth

Completed

Basic Math to Get Started

First, just to become familiar with math in Python, let's calculat

```
[ ] 1 # Calculate the Muon Neutrino Event Ratio for tl
    2 farNuMuEvents = 6 # Update this value to the nu
    3 farNCEvents = 40 # Update this value to the nu
    4 farNuMuEventRatio = farNuMuEvents / (farNuMuEventS farNuMuEventRatio # A call to the variable alu
```

0.13043478260869565

Document Goal

Coding Process

- Import Data from GitHub
- Visualize the Dataset
 - How many, basic stats (range, mean...)
 - Lots of Events of a Similar Nature
 - Make a Histogram!

Coding - Count Based on Length

```
3 # TO NETP DECERBITE AN EVENT WAS A NUMB EVENT (AND NOT AN INC
 5 nuMuEventTrackLength = 400 # This number should be updated
 6 print("NuMu Event Length Value: ", nuMuEventTrackLength)
NuMu Event Length Value: 400
                                          3 # when used with a logical expression, the number of events that evaluate
                                          5 nearNuMuEventCount = np.sum(data['longest'] > nuMuEventTrackLength)
                                          6 print("Near NuMu Event Count: ", nearNuMuEventCount)
                                         Near NuMu Event Count: 2655
                     2 # Update the below line as needed to probably create the end ratio
                      3 nearDetectorRatio = nearNuMuEventCount / len(data['longest'])
                     4 print("Near Detector NuMu Event Ratio: ", nearDetectorRatio)
                    Near Detector NuMu Event Ratio: 0.41811023622047244
```

Coding Extension - Number Comparison

```
6
7 eventPercentDiff = (np.abs(nearDetectorRatio - farNuMuE 8 print("Event Percent Difference: ", eventPercentDiff)

Event Percent Difference: 220.55118110236225
```

```
6 minNearNuMuEventsCount = np.sum(data['longest'] > 600)
7 maxNearNuMuEventsCount = np.sum(data['longest'] > 300)
8
9 minRatioNear = minNearNuMuEventsCount / len(data['longest'])
10 maxRatioNear = maxNearNuMuEventsCount / len(data['longest'])
11
12 print("Low Ratio Near NuMu Events: ", minRatioNear, " High Ratio Near NuMu Events: ", maxRatioNear)
13 print("Far NuMu Event Ratio: ", farNuMuEventRatio)
```

Low Ratio Near NuMu Events: 0.21118110236220472 High Ratio Near NuMu Events: 0.5478740157480315 Far NuMu Event Ratio: 0.13043478260869565

Goal: Ratio Comparison

Far Detector

- Manual Image Analysis, Type of Interaction (Charged, Neutral) Given
 - o Ratio: 6 / 46 = 0.13

Near Detector

- Lots of Events...Use Coding to Differentiate Between Interaction Type
 - o Ratio: 2655 / 6350 = 0.42

What Does the Ratio Mean?

Charged Current Interaction

- W+ Boson Mediated
- Can Tell the Type (Muon)

Neutral Current Interaction

- Z Boson Mediated
- All Types Look the Same

Far Detector: 13% of Total Events were Muon Type

Near Detector: 42% of Total Events were Muon Type

Neutrino Oscillation!

Even Bananas: How Neutrino Oscillations Work

Masterclass Next Steps

Where We've Been...

- QuarkNET Teacher Workshops Last Summer
 - Houston, Minnesota, Virginia Tech, William & Mary
- AAPT Winter Meeting
 - Workshop Session in Portland
- Piloted with Students
 - UofM Last Year, UofM early March, UC Irvine late March

Future Thoughts...

- Continue to Collect Feedback…Iterates Every Time
- Working with Dr. Pawlowski to Generate More Data Sets
- Preparation of Masterclass Documentation
- Continue to Spread the Word

Thank You!

Questions? Thoughts?