
Introduction to Smart
Contracts

What is a smart contract?

A smart contract is a computer program executed in a
secure environment that directly controls digital assets

A smart contract is a computer program executed in a
secure environment that directly controls digital assets

Example: bet on an event

if HAS_EVENT_X_HAPPENED() is true:

send(party_A, 1000)

else:

send(party B, 1000)

A smart contract is a computer program executed in a
secure environment that directly controls digital assets

Secure environments can be:

● Servers run by trusted parties
● Decentralized computer network (ie. blockchains)
● Quasi-decentralized computer network (ie. private

blockchains)
● Servers run by semi-trusted parties using a platform

where all computation is auditable (eg. Monetas)
● Hybrid solutions combining the above (eg. state

channels)

A smart contract is a computer program executed in a
secure environment that directly controls digital assets

“Smart contracts” are to some extent a misnomer because
they differ from legal contracts in one very important
respect: smart contracts do not impose obligations on

anyone.

Rather, they hold assets/collateral themselves.

Example:

● Legal contract: “I promise to send you $1000 if X
happens”

● Smart contract: “I send $1000 into a computer
program which sends it to you if X happens, otherwise
it eventually sends it back to me”

A smart contract is a computer program executed in a
secure environment that directly controls digital assets

This is in fact a much broader category than you
might think.

Money

Domain names

Million dollar homepage

Top 5 crowdfunding campaigns in history

… one sold 60,102,206 digital tokens whose value is
to pay for computational cycles in a decentralized
network

… one sold virtual spaceships in their MMORPG for
$500 each

A few more examples of what contracts can do...

Example: escrow

Example: contract for difference

if timestamp > 1445000000:

send(1000 - 50 * (GET_CHF_USD_RATE() - 0.93), party_A)

send(50 * (GET_CHF_USD_RATE() - 0.93), party_B)

In reality you also want margin calls

if timestamp > 1445000000 or

GET_CHF_USD_RATE() < 0.95 or

GET_CHF_USD_RATE() > 1.11:

send(1000 - 50 * (GET_CHF_USD_RATE() - 0.93), party_A)

send(50 * (GET_CHF_USD_RATE() - 0.93), party_B)

Example: multisig

data operations[](to, value, sigs, sigMask, done)

data owners[7]

def sign(my_owner_ID, send_ID):

if self.owners[my_owner_ID] == msg.sender:

if not (self.operations[send_ID].sigMask & 2**my_owner_ID):

self.operations[send_ID].sigMask |= 2**my_owner_ID

self.operations[send_ID].sigs += 1

if self.operations[send_ID].sigs == 4 && !self.operations[send_ID].done:

send(self.operations[send_ID].to, self.operations[send_ID].value)

self.operations[send_ID].done = 1

● Code is more complicated, but...
● Basically, need M of N “owners” to agree in order for a

transaction to be sent

Example: multisig

● Can also do more complex access policies
○ eg. need 1 of 7 to withdraw up to $1000 per day, 4

of 7 to withdraw more
● Mandatory waiting periods
● Dead man switches + self-executing “digital wills”
● Put an entire organizational governance policy onto a

smart contract == proto-”DAO”

… crypto doesn’t mean you can’t have a pretty interface!

Example: computational markets

● Put up a smart contract bounty for a solution to a
mathematical problem

● Put up a smart contract bounty for submitting proofs
of retrievability for a file with a given root hash

Example: prediction markets

● Users trade shares that pay $1 if an event happens, $0
if it does not

● Requires external mechanism to report on whether
the event took place
○ Can use multiple mechanisms to reduce trust if

desired
● Idea: give society a real-time view what probability the

market thinks the event has of happening

An interesting use case

● Hashcash: require sender of every email to spend
~$0.01 of computational effort to produce a nonce
that must be attached to each email

● Goal: fight spam
● Alternative: require sender of every email to create a

security deposit, gives recipient right to destroy $1 by
clicking “Report Spam”

● More powerful spam protection at lower average cost

Smart contracts vs legal contracts

● This distinction is commonly brought up, but it is
important to understand the two are very different

● A smart contract is more like a vending machine than a
legal contract

Smart contracts vs legal contracts

Legal contracts Smart contracts

Good at subjective (ie. requiring
human judgement) claims

Good at objective (ie. mathematically
evaluable) claims

High cost Low cost

Ex-post enforcement (which of course
provides ex-ante incentivization)

Ex-ante prevention

Relies on penalties Relies on collateral/security deposits

Jurisdiction-bound Potentially international (“a-legal”)

Smart contracts vs legal contracts

● Example: smart contracts are not very effective for loans,
because if someone has the capital to provide liquid
collateral for a loan they do not need the loan in the first
place
○ Can use illiquid collateral though (eg. domain names)

● Example: legal contracts are not very effective for the
anti-spam use case because amounts at stake are so small,
and spammers can locate themselves in favorable
jurisdictions and evade detection

Smart contracts are like robots

CONTRACT

...party A agrees
to exercise
reasonable care
in providing…….

????????

So why are smart contracts useful?

Smart contracts are mostly useful where...

● Participants are in many countries, or theoretically
could be in any country

● Monetary amounts are small
● Conditions are easily programmatically verifiable
● Fast and certain resolution is desired
● Users want the privacy of not revealing details of their

agreement to any external third party

Partially smart contracts

● eg. Legalese.io (Singapore)
● Make “smart” contracts which are processed

automatically in many cases, but in corner cases
explicitly relegate decision-making authority to a
human third party

● Potentially mix best of both worlds

Now how do you build them?

Ethereum

● Blockchain with built-in
programming language

● Designed for maximum abstraction
and generality
○ Programming language makes it

ideal for smart contracts

Quick overview of blockchains

● Decentralized computer network that simulates a
computer running a program (ie. state machine)

● What is “state”?
○ Balances (Bitcoin)
○ Domain names (Namecoin)
○ Computer code and storage (Ethereum)

● Transactions sequentially processed and update the state

Quick overview of blockchains

● Transactions grouped into blocks
● Guarantee that eventually everyone in the network will

agree on the order of blocks up to any given point
● Consensus mechanisms, eg. “Proof of work” / mining

Ethereum

● Two types of accounts
○ User accounts (controlled by external private

key)
○ Contracts (controlled by code)

● Anyone can create an application or smart contract
by writing it as a contract on Ethereum

Why Ethereum?

● Seeming public consensus circa 2013: blockchains are
useful for… stuff

● Not just money! Asset issuance, crowdfunding, domain
registration, title registration, gambling, prediction
markets, internet of things, voting, hundreds of
applications!

Problem: most existing blockchain protocols were
designed like this:

Or, at best, like this:

So… why not make a protocol that works like this?

DNS: The “Hello World” of Ethereum

data domains[](owner, ip)

def register(addr):

if not self.domains[addr].owner:

self.domains[addr].owner = msg.sender

def set_ip(addr, ip):

if self.domains[addr].owner == msg.sender:

self.domains[addr].ip = ip

How Ethereum Works

● Every transaction specifies a TO address it sends to (unless
it’s creating a contract)

● The TO address’s code runs
● Code can:

○ Send ETH to other contracts
○ Read/write storage
○ Call (ie. start execution in) other contracts (can be used

recursively)

How Ethereum Works

● Every (full) node on the blockchain processes every
transaction and stores the entire state, just like Bitcoin

How Ethereum Works

● Halting problem
○ Cannot tell whether or not a program will run infinitely

● Solution: charge fee per computational step (“gas”)
● Special gas fees also applied to operations that take up

storage
● There is a “gas limit” per block, analogous to block size

limit in bitcoin

Ether

● Cryptographic token inside of Ethereum
● Two primary applications

○ Given to miners as a reward for securing the network
○ Used to pay transaction/gas fees

High-level programming languages

● Multiple languages exist
○ LLL
○ Serpent
○ Solidity

● Compile to EVM code (executed by all nodes processing
blockchain)

● Another tool “compiles” function calls with arguments into
bytes passed as transaction data

Light client friendliness

● Problem: not every computer can process every
transaction in every block on the blockchain
○ Smartphones
○ IoT devices
○ Eventually, even many regular laptops

Merkle trees

Merkle trees

● Allow users to efficiently look up and verify small parts of the
blockchain on-demand without processing the whole thing

What do people use it for?

● Digital assets
○ Ether
○ Stablecoins (Maker, String, etc)

● Registries
○ Decentralized domain names, chat usernames,

e-commerce sites
● Finance

○ Hedging, derivatives, etc
● Prediction markets

What do people use it for?

● Economic / social experimentation
○ Monetary policy (eg. stablecoins)
○ Basic income / decentralized insurance projects
○ Decentralized autonomous organizations

● IoT
○ Tracking state and ownership of hardware
○ Automated sharing economy (eg. slock.it)

● Identity
○ Decentralized single-sign-in
○ Reputation (incl economic approaches)

Challenges of blockchains

● Scalability
○ State channels
○ Sharding

● Privacy
○ Ring signatures
○ zk-SNARKs

● Speed
● Efficiency

○ Proof of stake

Smart contracts and blockchains

● The two do naturally go well together
○ Automatic execution + decentralized trust model

● However, smart contracts can of course be applied in
other contexts
○ Centralized financial systems
○ Hardware devices

● Also, not all Ethereum contracts are smart contracts
in the sense of controlling digital assets (eg. data
publishing use cases)

