Penerapan Machine Learning dalam Memprediksi Kemacetan di 10 Titik Simpang Terpasang Intelligent Traffic Control System (ITCS) berbasis AI di DKI Jakarta
Nafanalitics
Our Team
Mohamad Faza Fauzan
Roissyah Fernanda Khoiroh
Fauzan Ihza Fajar
Outline
01
03
02
04
Introduction
Data and Methods
Results
Conclusion and Future Work
Introduction
01
Latar Belakang
Batasan masalah
Data and Methods
02
10 Titik Simpang Terpasang ITCS Berbasis AI
1700 baris, 7 kolom
Data
Methods
Data Preprocessing
EDA
Feature Engineering
Feature Selection
Modeling
KMeans
Random Forest dan XGBoost Regressor
Random Forest dan XGBoost Classifier
Mengelompokkan waktu tempuh ke dalam n klaster
Memprediksi waktu tempuh
Memprediksi label kategori waktu tempuh
Results
03
Klastering
Interpretasi Klaster
Kluster 3 : Macet
Kluster 1 : Sedikit Macet
Klaster 2 : Ramai Lancar
Klaster 0 : Lancar
Regresi
Klasifikasi
Demo
Deployment Link
http://ristek.link/predict-traffic-Nafanalitics
https://predict-cluster-lalu-lintas-h4xargbrrbqhfuugi9tebb.streamlit.app/
Conclusion and Future Works
04
Conclusion
Future Work
Thank You!
Let’s move on to QnA session