

High Energy Physics Center for Computational Excellence: CCE Phase 2: FY24 SIM

DOE HEP CCE All-Hands

Dec 18-19 2023

Two Focus Areas

- Event Generators
- Detector Simulation

We will set up monthly meetings of SIM leadership

- Interest spreadsheet to follow
- Slack channel is in place #sim-wg
- First meeting in January will figure out organization of task
 - Reporting of milestones
 - Dissemination and archiving of results

Event Generators: FY24 Goals

- Preparation for NLO software portability:
 - Parallel implementation of transcendental functions (Li_n, ...)
 - survey existing solutions if they exist
 - Identification of GPU-friendly alternatives to quadruple precision arithmetic
 - survey existing solutions if they exist
 - Note: Good targets for Summer Student Engagement
- Engaging with OpenLoops:
 - Creation of test cases (simple 2->2 or 2->3 process).
 - used as simple porting standalone examples.
 - Porting these become a proxy for what we need for the full code.
 - Combination with either Sherpa or Pepper framework to test physics performance.
- Continued LO MadGraph Support:
 - Wrapping up LO versions with final physics validation and patches, documentation, etc.

ANL: 0.1 staff FTE + 0.5 post-doc FTE (to be hired in Summer 2024) FNAL: 0.1 staff FTE + post-doc FTE (TBD)

Detector Simulation Milestones - FY24

Optical Photons

- 1. Implement GPU optical physics models (Nvidia/AMD)
- 2. Integrate GPU optical photon event loop into Celeritas with verification and baseline performance on (simplified) LZ geometry models

Geometry

 Develop GPU-enabled surface-based shape models needed for ATLAS, CMS, and other experimental detector models

