Unit 2: Soil acidity and liming

Krishna Poudel Senior Agriculture Instructor Department of Plant Science Shree Triveni Secondary School Province 1, Nepal Contact: +9779847016830 <u>Krishna Poudel (researchgate.net)</u> E-mail: <u>poudelkrishna051@gmail.com</u>

Soil Acidity:

*Soil acidity is a condition in which the soil pH is lower than a neutral pH (less than 7).

*Soil pH is a measure of the hydrogen (H+) ion concentration expressed as the negative common logarithm of H+ concentration.

i.e. Soil pH = $-\log(H^+)$

* When soil becomes too acidic it can: decrease the availability of essential nutrients, increase the impact of toxic elements, decrease plant production and water use.

*The main cause of soil acidification is inefficient use of nitrogen, followed by the export of alkalinity in produce. Ammonium based fertilizers are major contributors to soil acidification.

- *Soil acidity is common in all regions of moderate to heavy rainfall (e.g. eastern Terai of Nepal) where precipitation is sufficient to leach appreciable amt. of exchangeable non-acid cations) like Na⁺, K⁺, Mg^{2+,} Ca^{2+,}
- *As basic cations are removed, soil tends to become acidic in reaction.
- *Predominant acid causing cations are H^+ , Al^{3+} .

Causes of soil acidity

1. Characteristics of parent materials

 Soils formed from the rocks having acidic ions are acidic eg Granite/Quartz

- Soils formed from rocks having basic ions are basic eg. Basalt
- Clay minerals such as Kaolinite, montmorillonite, Fe and Al are acidic in nature

2. Accumulation of OM & their decomposition

 OM contains numerous acid functional groups from which H⁺ ions can dissociate.

• During decomposition, many (in)organic acids are released.

• Slow & persistent action of weak inorganic acids especially of carbonic acid on mineral constituent of soil is responsible for the removal of base forming cations like Ca^{2+,} Mg^{2+,} etc. by dissolution & leaching.

3. High rainfall & low evaporation

- Basic cations are more soluble than acidic cations
- Under high precipitation, basic cations $(Ca^{2+,}Mg^{2+,}K^{+}, Na^{+})$ leach out but the acid cations such as Al^{3+} & H⁺ tends to retain in the soil surface.
- So surface soil becomes acidic & consequently the sub surface soil is basic.

4. Acid rain

- Rain with pH value <5 is termed an acid rain.
- The acid rain has pH of about 4-4.5 but sometime as low as 2.
- When raindrops falls through unpolluted air, water reacts with CO2 & forms weak acids H_2CO_3 which dissociates & release H⁺
- In polluted air with N & S gases coming from industrial combustion, forest fires, volcanic eruptions, N & S reacts with water forming HNO₃ & H₂SO₄.

• These strong acids dissociates in soil and release H^+ , N_2 , N_2O , H_2O HNO₃

 $SO_{2} + \frac{1}{2}O_{2} + H_{2}O \longrightarrow H_{2}SO_{4} \longrightarrow SO_{4}^{2^{-}} + 2H$ $CO_{2} + H_{2}O \longrightarrow H_{2}CO_{3} \longrightarrow HCO_{3}^{-} + H^{+}$ $N_{2}, N_{2}O + H_{2}O \longrightarrow HNO_{3}$

6. Plant residues

- Root respiration/OM decomposition by MOs produce CO2.
- CO₂ & H₂O reacts to form H₂CO₃; H⁺ dissociates
- Because H₂CO₃ is a weak acid, its contribution to H⁺ ions is negligible when the pH is much below 5.0.
- This decomposition of OM is very common in forest soils.

 $CO_2 + H_2O \longrightarrow H_2CO_3 \longrightarrow HCO_3^- + H^+.$

- 7. Oxidation of nitrogen (nitrification) & sulfur $NH_4^+ + 2O_2 \rightarrow NO_3^- + 2H^+ + H_2O_3$
- Firstly, breakdown of plant residues also involves oxidation of organic-SH groups to yield H₂SO₄.
- Secondly, reduced sulfur (such as FeS4) also release H+

8. Plant uptake of basic cations

• Plants uptake more of certain cations (e.g. K⁺, NH⁴⁺ & Ca²⁺).

 For every +ve charge taken in on a cation, a root maintain charge balance either by taking up anion or by exuding cations.

• When they take up far more of cations (Ca, Mg, NH_4 , K) than they do of anions (SO_4^{2-} , NO_3^{-}) (for eg Legumes), plant usually exude H⁺ ions into the soil sol to maintain charge balance & contribute to acidification.

• When plant root maintain charge balance by up taking the same quantity of opposite charged ions, it does not change soil P.

9. H⁺ ions (Root exudates)

 Some H⁺ ions excreted by plants are exchanged for nutritive cations such as Ca^{2+,} process known as contact cation exchange.

10. Crop removal of basic cations

• Some dicot plants such as legumes absorb basic cations thus indirectly causing soil to be acidic.

• Eg. Yield of 13 ton/ha alfa-alfa removes 45 kg Ca and 9 kg Mg

Liming material and their uses

- *Liming materials are found in 3 major forms :
- i. Oxide form: eg. CaO (unslaked, burned, quick lime)
- ii. Carbonate form: eg.Calcite (CaCO₃), dolomite CaMg(CO3)₂
- iii. Hydroxide form: eg. Ca(OH)₂ (slaked, hydrated lime)

Oxide form: eg. CaO

*Commercial oxide of lime is normally referred to as unslaked (no water molecule) lime, or burned lime or quick lime.

* It is the white powder & more expensive than other limes.

*It is produced by heating calcite (CaCO3) or dolomite in oven or furnace in which the following reaction takes place :

$$CaCO_{3} + heat \longrightarrow CaO + CO_{2}$$
(Calcite)
$$Ca.Mg (CO_{3})_{2} + heat \longrightarrow CaO + MgO + 2CO_{2}$$
(Dolomite)

*It has caustic properties; reacts much rapidly with soil.

*Thorough/well mixing with soil is necessary otherwise there will be caking problem (difficult to handle).

*It is much more effective among all liming materials, NV is 178% as compare to pure CaCO₃

ii. Carbonate forms eg Calcite & dolomite

- The 2 important minerals included in limestone are Calcite (CaCO₃) & Dolomite (Ca.Mg.(CO₃)₂);
- When there is little or no-dolomite, it is referred to as **calcite**. As the Mg increases, it is referred to as **dolomitic limestone**.
- Dolomite has NV 75 to 99% while the representative crushed limestone is about 94%.

li. Hydroxide form

 Hydroxide form of lime is commonly referred as hydrated lime or slaked lime, since adding water to burned lime produces it.

 $CaO + MgO + 2H_2O \longrightarrow Ca (OH)_2 + Mg(OH)_2$

Ca(OH)₂ has NV 135%.

Describe how liming materials increase soil pH

- Limestone contain CaCO₃ & MgCO₃
- The limestone dissolves in water to form carbonic acid & calcium hydroxide: CaCO₃ + H₂O ↔ H₂CO₃ + Ca(OH)₂
- Carbonic acid is unstable and converts to carbon dioxide (CO2) and water; the CO₂ gas escapes: H₂CO₃ ↔ CO₂ + H₂O
- Calcium hydroxide dissociates: Ca(OH)₂ ↔ Ca²⁺ + 2OH⁻
- The Ca²⁺ replaces 2H⁺ from the soil, increasing the soil BS
- The hydroxide anion (OH⁻) reacts with the soil acid cation (H⁺), forming water: OH⁻ + H⁺ ↔ H₂O

Factors affecting the liming

1. Amount:

- Crops differ in sensitivity to soil and added lime in soil.
- Amount of lime to be applied depends on inherent properties of soil i.e. texture, clay type and OM content.
- In a coarse textured with low OM soil, the lime requirement will be less than for a fine textured, high OM soils.

2. Timing:

- Liming reacts slowly with soil acidity.
- Lime may not have adequate time to react with soil if applied just before seeding.
- •Due to its gradual effect, lime should be spread about 6-12 Months ahead of crop that has the highest pH and Ca requirement.
- For rotations that include leguminous crops, lime should be applied 3-6 months before the seeding time.

3. Frequency:

*The lime requirement depends on soil texture, N source and rate, crop removal, precipitation patterns and lime rate.

*On sandy soils, frequent light applications are preferable whereas on fine textured soils, large amounts may e applied less frequently.

*For humid regions, where the forces of acidification proceed excessively, application to arable soils is not done once but must be repeated every 3-5 years.

Soil salinity

- The condition of soil where there will be the higher concentration of dissolved/soluble salts(ions) that is sufficient to interfere the growth of most plants is known as soil salinity.
- Salts present are typically dominated by carbonate (HCO₃⁻/CO₃⁻), sulfate (SO₄²⁻) & chloride (Cl⁻) of Ca, Mg, Na, K³
- In general, NaCl is the most abundant.
- The salinity is measure primarily by measuring the Total Dissolved Solids (TDS) and Electrical Conductivity (EC).

THANK YOU