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Outline:
1. Autoencoder: introduction and general intuition
2. Undercomplete Autoencoder
3. Regularized Autoencoder:

a. Denoising Autoencoder
b. Sparse Autoencoder

4. From Autoencoder to U-Nets: medical image segmentation
a. Transposed Convolution
b. Skip Connections

5. An application of U-Nets: introduction to the hackathon 
exercise



An AutoEncoder Neural Network is 
an unsupervised learning algorithm 
that is trained to attempt to copy its 
input to its output.
It is made of two main parts: 
● an encoder        ->   h = f(x)
● a decoder          ->    r = g(h)
h is a hidden layer (latent space) that describes a code used 

to represent the input.



If an autoencoder learns 
g(f(x))=x everywhere… 
It is not useful!

We want to insert 
something that avoid 
the perfect copy of the 
input!



Undercomplete Autoencoder

The first thing we can do to avoid the learning 
of identity is to let the latent space be smaller 
than the input.

REMINDER : Capacity is an 
informal term and it is the 
capability of a NN to use the 
information in a significant 
way. More neurons, more 
layers correspond to more 
capacity.

The learning process is simply the minimization 
of a loss function:

L(x, g(f(x)))
The loss function can be chosen 
among the ones that penalize 
g(f(x)) for being dissimilar to x.



Regularized 
Autoencoder

We have just seen that we can act on 
capacity to avoid the autoencoder to 
learn the identity function.

Can we build a non-linear and 
overcomplete autoencoder that does 
not learn the identity?

YES

How? Instead of limiting capacity we 
can make something that pushes the 

model to have other properties



Denoising autoencoder (DAE):

DAE receives corrupted 
data points as input and it 
is trained to predict the 
original one as output.

L(x, g(f(x’)))

Is this an unsupervised 
algorithm?



Sparse autoencoder

We insert in the loss function a 
SPARSITY penalty Ω(h) on 
the code layer h:

L(x, g(f(x))) + Ω(h)

Informally, we think that a neuron is “active” if its 
output value is close to 1 or “inactive” if it is close to 0: 
in a sparse AE we constrain the neurons of the hidden 
layer to be inactive for most of the time.



Traditionally autoencoders were used for:
● dimensionality reduction

● learning features
Nowadays, they are used also as generative 
models (you will see it in a later lesson by 
Francesco Vaselli and Matteo Barbetti)



Convolutional Sparse 
AutoEncoder (CSAE) for 
breast density

In this study, authors used a CSAE to extract 
features and then trained a classifier for breast 
density.

M. Kallenberg et al., "Unsupervised Deep Learning Applied to Breast Density Segmentation and Mammographic Risk Scoring," in IEEE 
Transactions on Medical Imaging, vol. 35, no. 5, pp. 1322-1331, May 2016, doi: 10.1109/TMI.2016.2532122.



Convolutional Sparse 
AutoEncoder (CSAE) for 
breast density

M. Kallenberg et al., "Unsupervised Deep Learning Applied to Breast Density Segmentation and Mammographic Risk Scoring," in IEEE 
Transactions on Medical Imaging, vol. 35, no. 5, pp. 1322-1331, May 2016, doi: 10.1109/TMI.2016.2532122.



Segmentation of medical images
Medical images have some peculiarities  with respect to other 
images:

- They are usually in high resolution  (ex: a DM are usually about 
4000x4000);

- We need to find very small details  with respect the whole 
image;

- We could use a patch-wise approach but it is not always possible;

It is not often possible to make a priori considerations  on distributions 
or constraints but we need to delete on the images those parts that are not 
relevant for our scopes. -> SEGMENTATION



U-Nets
U-Nets are Fully Convolutional Neural Networks (FCNN) and the 
state-of-the-art method for medical image segmentation.
They have an encoder-decoder structure as autoencoders.



Transposed 2D Convolution (deconvolution)
Transposed 2D 
Convolution with 
stride 2



AE and U-Nets: skip connections
They are both made of an encoder and a decoder.
U-Nets are supervised learning algorithms while AE are unsupervised.
U-Nets exploit the skip connections (in orange in the Figure).



Skip connections
Skip connections are common in Convolutional Neural Networks. They consist 
in connecting different layers through addition or concatenation . 

Residual Neural 
Network 
(ResNet):

Short skip connections:
- In ResNet, addition is 

used;
- Reduce the problem 

of the vanishing 
gradient;

- Preserve information 
through the (many) 
layers;



Skip connections in U-Nets Long skip connections:
- In U-Nets, 

concatenation is 
used;

- Reduce the 
problem of the 
vanishing gradient;

- Preserve 
information that 
contains 
fine-grained details. 

For both addition and concatenation we should check carefully the sizes of the 
parts of the network we are connecting. They have to match except for the 
addition/concatenation axis.



Example of U-Nets:

Lizzi F et al. Quantification of pulmonary involvement in COVID-19 pneumonia by means of a cascade of two U-nets: training and assessment 
on multiple datasets using different annotation criteria. International Journal of Computer Assisted Radiology and Surgery, 2021.



Chest X-Ray images
These are the images we are going to 
use this afternoon in the exercise.

As you can see, most of the pixels in 
this image do not belong to the lungs. 
So they are not useful if we want to 
analyze lungs.

We need a way to delete them.

This afternoon, we will write a 
U-Nets with Keras 



Exercise structure:

Data Generator
● To load data
● To do real time data augmentation

Architecture ● You have to write the decoder

Loss and Metrics
● We will define the DSC loss
● We will define the DSC metric

Train and Test
● You will train the architecture
● You will test the trained U-Net



Thank you for your kind attention!
Questions?

francesca.lizzi@pi.infn.it



Some examples:
Computed Tomography of a COVID-19 
patient

Breast cancer signs on mammograms: left 
architectural distortion, right asymmetry



Undercomplete Autoencoder:

- if the decoder is linear and the loss 
function is a MSE, an autoencoder 
learns to span the same subspace of 
the Principal Component Analysis 
(PCA);

- autoencoders with non-linear 
encoder (f) and decoder (g) can 
learn a “more powerful” 
generalization of the PCA.

Interesting exercise to see this 
behaviour:
https://towardsdatascience.com/autoen
coders-vs-pca-when-to-use-which-73d
e063f5d7
https://towardsdatascience.com/dimen
sionality-reduction-with-autoencoders
-versus-pca-f47666f80743

We can imagine to build a 
very complex (high 
capacity) autoencoder and 
use a hidden layer of 
dimension 1 -> what will 
happen in this case?

https://towardsdatascience.com/autoencoders-vs-pca-when-to-use-which-73de063f5d7
https://towardsdatascience.com/autoencoders-vs-pca-when-to-use-which-73de063f5d7
https://towardsdatascience.com/autoencoders-vs-pca-when-to-use-which-73de063f5d7
https://towardsdatascience.com/dimensionality-reduction-with-autoencoders-versus-pca-f47666f80743
https://towardsdatascience.com/dimensionality-reduction-with-autoencoders-versus-pca-f47666f80743
https://towardsdatascience.com/dimensionality-reduction-with-autoencoders-versus-pca-f47666f80743


Sparse autoencoder

We insert in the loss function a SPARSITY penalty Ω(h) on the code layer h:

L(x, g(f(x))) + Ω(h)

Informally, we think that a neuron is “active” if its 
output value is close to 1 or “inactive” if it is close 
to 0: in a sparse AE we constrain the neurons of 
the hidden layer to be inactive for most of the 
time.

Let’s aj
(2)(x) be the activation of the neuron j in the hidden layer with respect to an 

input X. We can define the average activation as:

⍴ is called 
SPARSITY 
PARAMETER



Sparse autoencoder
L(x, g(f(x))) + Ω(h)

We can now choose sparsity penalty to be added 
to the loss function.

There are many choices, for example:

This penalty function can be written as: 

and otherwise it increases monotonically as ⍴j 
diverges form ⍴.

^


