
Autoencoders and U-Net
Third ML-INFN Hackathon: Advanced Level

21-24 November 2022, Bari (Italy)

Francesca Lizzi
INFN Pisa

22 November 2022

Outline:
1. Autoencoder: introduction and general intuition
2. Undercomplete Autoencoder
3. Regularized Autoencoder:

a. Denoising Autoencoder
b. Sparse Autoencoder

4. From Autoencoder to U-Nets: medical image segmentation
a. Transposed Convolution
b. Skip Connections

5. An application of U-Nets: introduction to the hackathon
exercise

An AutoEncoder Neural Network is
an unsupervised learning algorithm
that is trained to attempt to copy its
input to its output.
It is made of two main parts:
● an encoder -> h = f(x)
● a decoder -> r = g(h)
h is a hidden layer (latent space) that describes a code used

to represent the input.

If an autoencoder learns
g(f(x))=x everywhere…
It is not useful!

We want to insert
something that avoid
the perfect copy of the
input!

Undercomplete Autoencoder

The first thing we can do to avoid the learning
of identity is to let the latent space be smaller
than the input.

REMINDER : Capacity is an
informal term and it is the
capability of a NN to use the
information in a significant
way. More neurons, more
layers correspond to more
capacity.

The learning process is simply the minimization
of a loss function:

L(x, g(f(x)))
The loss function can be chosen
among the ones that penalize
g(f(x)) for being dissimilar to x.

Regularized
Autoencoder

We have just seen that we can act on
capacity to avoid the autoencoder to
learn the identity function.

Can we build a non-linear and
overcomplete autoencoder that does
not learn the identity?

YES

How? Instead of limiting capacity we
can make something that pushes the

model to have other properties

Denoising autoencoder (DAE):

DAE receives corrupted
data points as input and it
is trained to predict the
original one as output.

L(x, g(f(x’)))

Is this an unsupervised
algorithm?

Sparse autoencoder

We insert in the loss function a
SPARSITY penalty Ω(h) on
the code layer h:

L(x, g(f(x))) + Ω(h)

Informally, we think that a neuron is “active” if its
output value is close to 1 or “inactive” if it is close to 0:
in a sparse AE we constrain the neurons of the hidden
layer to be inactive for most of the time.

Traditionally autoencoders were used for:
● dimensionality reduction

● learning features
Nowadays, they are used also as generative
models (you will see it in a later lesson by
Francesco Vaselli and Matteo Barbetti)

Convolutional Sparse
AutoEncoder (CSAE) for
breast density

In this study, authors used a CSAE to extract
features and then trained a classifier for breast
density.

M. Kallenberg et al., "Unsupervised Deep Learning Applied to Breast Density Segmentation and Mammographic Risk Scoring," in IEEE
Transactions on Medical Imaging, vol. 35, no. 5, pp. 1322-1331, May 2016, doi: 10.1109/TMI.2016.2532122.

Convolutional Sparse
AutoEncoder (CSAE) for
breast density

M. Kallenberg et al., "Unsupervised Deep Learning Applied to Breast Density Segmentation and Mammographic Risk Scoring," in IEEE
Transactions on Medical Imaging, vol. 35, no. 5, pp. 1322-1331, May 2016, doi: 10.1109/TMI.2016.2532122.

Segmentation of medical images
Medical images have some peculiarities with respect to other
images:

- They are usually in high resolution (ex: a DM are usually about
4000x4000);

- We need to find very small details with respect the whole
image;

- We could use a patch-wise approach but it is not always possible;

It is not often possible to make a priori considerations on distributions
or constraints but we need to delete on the images those parts that are not
relevant for our scopes. -> SEGMENTATION

U-Nets
U-Nets are Fully Convolutional Neural Networks (FCNN) and the
state-of-the-art method for medical image segmentation.
They have an encoder-decoder structure as autoencoders.

Transposed 2D Convolution (deconvolution)
Transposed 2D
Convolution with
stride 2

AE and U-Nets: skip connections
They are both made of an encoder and a decoder.
U-Nets are supervised learning algorithms while AE are unsupervised.
U-Nets exploit the skip connections (in orange in the Figure).

Skip connections
Skip connections are common in Convolutional Neural Networks. They consist
in connecting different layers through addition or concatenation .

Residual Neural
Network
(ResNet):

Short skip connections:
- In ResNet, addition is

used;
- Reduce the problem

of the vanishing
gradient;

- Preserve information
through the (many)
layers;

Skip connections in U-Nets Long skip connections:
- In U-Nets,

concatenation is
used;

- Reduce the
problem of the
vanishing gradient;

- Preserve
information that
contains
fine-grained details.

For both addition and concatenation we should check carefully the sizes of the
parts of the network we are connecting. They have to match except for the
addition/concatenation axis.

Example of U-Nets:

Lizzi F et al. Quantification of pulmonary involvement in COVID-19 pneumonia by means of a cascade of two U-nets: training and assessment
on multiple datasets using different annotation criteria. International Journal of Computer Assisted Radiology and Surgery, 2021.

Chest X-Ray images
These are the images we are going to
use this afternoon in the exercise.

As you can see, most of the pixels in
this image do not belong to the lungs.
So they are not useful if we want to
analyze lungs.

We need a way to delete them.

This afternoon, we will write a
U-Nets with Keras

Exercise structure:

Data Generator
● To load data
● To do real time data augmentation

Architecture ● You have to write the decoder

Loss and Metrics
● We will define the DSC loss
● We will define the DSC metric

Train and Test
● You will train the architecture
● You will test the trained U-Net

Thank you for your kind attention!
Questions?

francesca.lizzi@pi.infn.it

Some examples:
Computed Tomography of a COVID-19
patient

Breast cancer signs on mammograms: left
architectural distortion, right asymmetry

Undercomplete Autoencoder:

- if the decoder is linear and the loss
function is a MSE, an autoencoder
learns to span the same subspace of
the Principal Component Analysis
(PCA);

- autoencoders with non-linear
encoder (f) and decoder (g) can
learn a “more powerful”
generalization of the PCA.

Interesting exercise to see this
behaviour:
https://towardsdatascience.com/autoen
coders-vs-pca-when-to-use-which-73d
e063f5d7
https://towardsdatascience.com/dimen
sionality-reduction-with-autoencoders
-versus-pca-f47666f80743

We can imagine to build a
very complex (high
capacity) autoencoder and
use a hidden layer of
dimension 1 -> what will
happen in this case?

https://towardsdatascience.com/autoencoders-vs-pca-when-to-use-which-73de063f5d7
https://towardsdatascience.com/autoencoders-vs-pca-when-to-use-which-73de063f5d7
https://towardsdatascience.com/autoencoders-vs-pca-when-to-use-which-73de063f5d7
https://towardsdatascience.com/dimensionality-reduction-with-autoencoders-versus-pca-f47666f80743
https://towardsdatascience.com/dimensionality-reduction-with-autoencoders-versus-pca-f47666f80743
https://towardsdatascience.com/dimensionality-reduction-with-autoencoders-versus-pca-f47666f80743

Sparse autoencoder

We insert in the loss function a SPARSITY penalty Ω(h) on the code layer h:

L(x, g(f(x))) + Ω(h)

Informally, we think that a neuron is “active” if its
output value is close to 1 or “inactive” if it is close
to 0: in a sparse AE we constrain the neurons of
the hidden layer to be inactive for most of the
time.

Let’s aj
(2)(x) be the activation of the neuron j in the hidden layer with respect to an

input X. We can define the average activation as:

⍴ is called
SPARSITY
PARAMETER

Sparse autoencoder
L(x, g(f(x))) + Ω(h)

We can now choose sparsity penalty to be added
to the loss function.

There are many choices, for example:

This penalty function can be written as:

and otherwise it increases monotonically as ⍴j
diverges form ⍴.

^

