

Advantages of Stepped Core over Square Core

Introduction

- The cross section of the transformer core may be rectangular, square or stepped.
- Generally the circular coils are preferred for distribution transformer whereas the square and stepped cores are preferred for power transformer.

- The cross section of the core may be rectangular for shell type transformer.
- The rectangular coil is suitable for small and low voltage transformers.

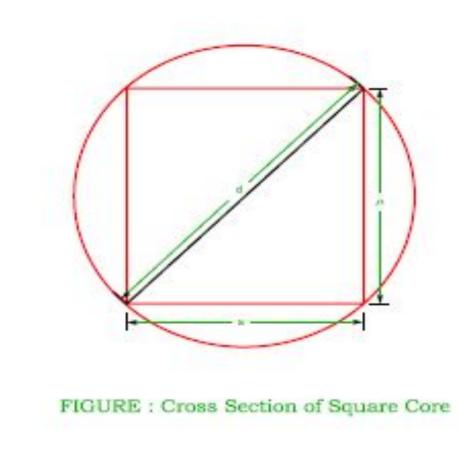
Why the stepped core is used in place of square core in the large rating

transformer?

• The diameter of the circumscribing circle for square / rectangular coil is larger than the diameter of stepped core of same area of cross section therefore the

length of mean turns of winding is reduced in the stepped core.

• Therefore the length of mean turns in the stepped core reduced which result in reduction of copper winding cost and copper losses.


• However as the number of steps increases of different sizes, the cost of

labour charges for shearing and assembling of different laminations are increases.

Square Coil

Let us consider

- Size of core = a
- Diameter of circumscribing circle = d
- The diameter of circumscribing circle is $d = \sqrt{(a^2 + a^2)} = \sqrt{2}(a)$

Therefore the side of square a = d / $\sqrt{2}$

Gross area of core
$$A_{gi} = a^2 = (d / \sqrt{2})^2 = 0.5d^2$$

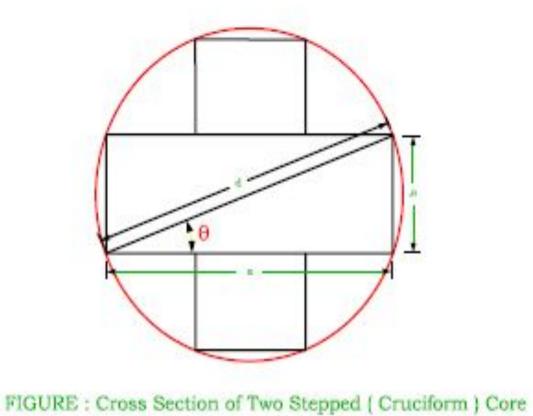
Stacking factor = Net core area / Gross core area

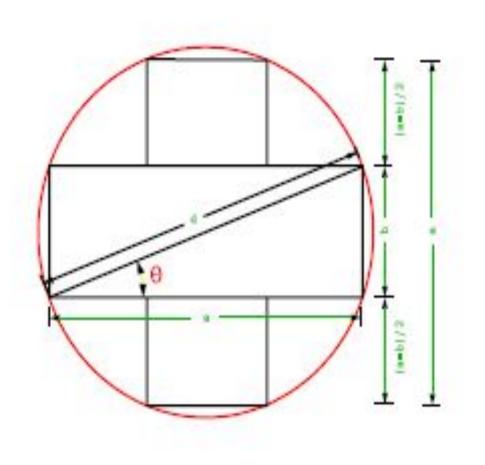
Let the stacking factor is 0.9

Net core area = (0.9) * Gross core area

$$= 0.45d^2$$

- Therefore the ratio of net core area to the area of the circumscribing circle
 - $= 0.45d^2 / (\pi d^2 / 4)$


= 0.58


• Similarly the the ratio of gross core area to the area of the circumscribing circle = 0.5d² / (π d² / 4)

= 0.64

Two Stepped Core

- Let the length of rectangular = a
- Breath of rectangular = b
- Diameter of circumscribing circle = d
- Angle between the length of rectangular and diagonal = θ

The two stepped core can be divided into three rectangular parts.

Gross core area $A_{gi} = ab + [(a - b)/2 * b] + [(a - b)/2 * b]$

$$A_{gi} = ab + ab - b^2$$

$$A_{gi} = 2ab - b^2$$
(1)

Now Cos θ = a / d

$$a = d \cos \theta \dots (2)$$

$$\sin \theta = b / d$$

 $b = d \sin \theta \dots (3)$

Substitute value of a and b in the equation (1)

$$A_{gi} = 2 (d \cos \theta) (d \sin \theta) - (d \sin \theta)$$
$$= 2d^{2} \sin \theta \cos \theta - d^{2} \sin^{2} \theta$$
$$= d^{2} (\sin 2\theta - \sin^{2} \theta)$$

)2

• Differentiate A_{gi} with respect to θ and equating to zero to get maximum core

```
area d / d\theta ( A<sub>gi</sub>) = 0
d / d\theta ( d<sup>2</sup> Sin 2\theta – d<sup>2</sup> Sin<sup>2</sup> \theta ) = 0
```

= $(2 d^2 \cos 2\theta - d^2 2 \sin \theta \cos \theta) = 0$

• Therefore d^2 (Sin 2 θ) = 2 d^2 Cos 2 θ

 $(Sin 2\theta / Cos 2\theta) = 2$

Tan 2
$$\theta$$
 = 2
2 θ = tan ⁻¹ (2)
 θ = [1/2] tan ⁻¹ (2)
= 31.72...(4)

Using equation (2), (3) and (4)

$$a = d \cos \theta = = d \cos (31.72) = 0.85d$$

 $b = d \sin \theta = d \sin (31.72) = 0.53d$

Substitute value of a and b in the equation (1)

$$A_{gi} = 2 (0.85d) (0.53d) - (0.53d)^2$$

 $= 0.618d^2$

- Stacking factor = Net core area / Gross core area
- Therefore net core area = 0.9 * Net core area

 $= 0.9 * (0.618d^2)$

• The ratio of net core area to the area of circumscribing circle

$$= 0.56 d^2 / (\pi d^2 / 4) = 0.71$$

• Similarly the ratio of gross core area to the area of circumscribing circle

 $= 0.618d^2/(\pi d^2/4)$

= 0.79

Finally We Conclude that

	Square core	Two stepped core (Cruciform core)
Net core area / Area of circumscribing circle	0.58	0.71
Gross core area / Area of circumscribing circle	0.64	0.79

Thank You www.myelectrical2015.com