
Immutable
JavaScript

Fernando Daciuk
$ npm install fdaciuk

Fernando Daciuk
$ npm install fdaciuk

http://da2k.com.br

Daciuk = Da”Two”k

Daciuk = Da2k

JAVASCRIP
TNINJA

https://blog.da2k.com.br/cursos

React
Ninja

https://blog.da2k.com.br/cursos

https://queroser.ninja/promocoes

Immutable
JavaScript

Immutability
is really

to understand

easy

Think in

that
something

NEVER
changes

That is

Immutability!

Okay, but

shouldwhy
I use
Immutability?

#1
concise code

Variables must have

from

same value

start
to finish

#2
avoid bugs

Immutable

prevents
code

side-effects

Bugs
usually

mutable state
live in

#3
thread safe

Immutable

doesn’t
code

change

Therefore,

haveit doesn’t

race
conditions

So,

related to

how is that

JavaScript?

two
ways:

#1
assignment

#2
objects

Let’s

some
see

code!

variable declaration

assign an array

function to update coords

function call

re-assignment

assignment

That is

by

mutability

How to

that code
make

immutable?

change “var” to “const”

function call

reassignments

const

prevents

instead

Lesson #01:

constuse

var or let

solved!

reassignment

problem:

Let’s

another
see

example

look this array

prevent reassignments

concise name

Let’s

something
do

with

that array

a function that adds
a value in an array

put a value in
array123

log that value on
console

Nothing

so far
new

Let’s

another action
do

with

same array

a function that
removes a value
from an array

index to start
changing the array

how many items is
going to be deleted

the first result
is actually the
expected

expected:
[1, 2]

???

What
happened?

before call
addInArray and
removeFromArray
functions

initial value

array123 has
changed

array123 has
changed AGAIN

Why
that

is

happened?

For
complete

a

understanding...

Let’s

about
talk

objects

{ }

But

I do NOT

mean

data type

I mean

object

JavaScript

of

two

has

groups

data types:

objects

Primitives
and

Primitives are:
String Number

Boolean

Null

Undefined

Symbol (ES6+)

Objects are all others:

Object Array

Function

etc...

RegExp

immutable

Primitive

are
values

mutable

Objects

always

are

What
that

is

mean?

initial value

change the
string

initial value still
the same

a new string
is created

That’s

Immutability
what

means!

what about

objects?

And

initial
value

object has
changed

Remember:

mutable

Objects

always

are

copy (?)

change the
copy (?)

both objects
log the same

it is not a copy

Objects

by

are

reference
passed

What
that

is

mean?

memory chip

new object

new object has
a memory
reference

variable name is
just an “alias”
(pointer)

two alias
same object

two alias
same object

two alias
same object

that’s why
when you
change one,
the other one
also changes

comparisons
are always true

example
One

more

both objects
“look” the
same

but
comparison
is false

it is an
object

it is
another
one

each one
has its
own
memory
space

each one
has its
own
memory
space

each one
has its
own
memory
space

that’s why
that
comparison
is false

avoid
So, tohow

mutability
with objects?

you can’t
mutate a
frozen object

you may try...

...but you won’t
be able to

are

But

objects
internal

new

references

posts are not
frozen (inside a
frozen object)

so, it can be
mutated

so, it can be
mutated

to

The waybest
make
code...

immutable

Isthinking
immutability

in

Instead

an

of

freeze
object...

Just

it

don’t
mutate

And

need
if

I
to change

do

anobject?

Then

you are
going to

transform
it...

And
create a

new copy
will

from it

new object

new object

mutate first
argument

empty object

copy all
props from
ball

copy all props from
new object

diameter exists on
“ball” object

diameter was
changed on

“soccerBall”

“ball” object still
the same

two different
objects

instead of
Object.assign...

we may use the new
“spread operator”

it spreads all props
on a new object

next props will be
changed

results are
the same

for

The goessame
any

object
kind of

remember
that?

let’s make
that code

immutable

just change
“push” to

“concat” and
return it

everything is
working without

side effects

Immutability
practicein

Instead of

array.push
use

array.concat

Instead of

array.splice
use

array.slice

Instead of
array.pop

use

array.filter

and
array.shift

Create
new array

before using

mutable
methods...

a

array.sort
like

and

array.reverse
for example

Instead of

loops (for/while)
use

array methods

array.map

array.filter

array.find

array.reduce

array.some

array.every

objects
Transform

in

iterate:before
arrays

Object.keys()

Object.values()

Object.entries()

preferOr
to

for
the new

use

of

Should

everywhere

I
immutability

in
my app?

use

No!

tryJust to

isolated
mutable state

keep

If

probably
they willbugs,

be on that state

you find

creating
But

more

memory...
spend more

objects

What
about

performance?

Don’t
worry!

Memory
arecheap

chips

With little data,
it makes
no difference

whether or not
to use
immutability

And

with
lots of

data...

Neither mutable
nor immutable

code will
help you

Worry
about

perceived
performance

Use

async
code

...

more
How to

learn

about

immutability?

Practicing
a lot!

And
getting

involved

with
community

the

/training-center/sobre

/frontendbr/forum

https://bit.ly/frontninja

You will

always
find help

As long
as you

have...

Respect.

Fernando Daciuk
$ npm install fdaciuk /fdaciuk/talks

