
Algorithms for Non-Volatile RAM

Guy Blelloch
Carnegie Mellon University

Contributions from many others including: Naama Ben-David,
Laxman Dhulipala, Jeremy Fineman, Phillip Gibbons, Yan Gu,
Hongo Kang, Charles McGuffey, Julian Shun, Yihan Sun, ++

NVRAMS
Properties (of Intel Optane):

● + Plug in like any other RAM, byte
addressable

● + Up to 512GB/DIMM (4 x RAM)
● + 32 Tbytes on an 4 chip server
● + No loss of data on power off
● - 2-3x slower for read throughput
● - 12x slower on write throughput

Other technologies on their way.

Write Efficient Algorithms
Try to reduce the number of writes.

Will outline three general techniques:

1. incremental updates
○ Reduce to sorting

2. “Anchors”
3. Rose

Focus on parallelism

Warmup : comparison-based sorting
How many writes are required?

● O(n) lower bound
● Quicksort, mergesort, heapsort?
● Any alternatives?

O(n log n)
Insert into a BST

Warmup : comparison-based sorting
For keys in random order
 N = newNode(ki)
 P = pointer to root of a binary tree
 While true do
 If *P = null then
 *P = N;
 Break;
 If N->key < *P->key then
 P = &(*P->left)
 else P = &(*P->right)

root

Only O(n) writes per insertion
O(n log n) comparisons w.h.p.

Works on deterministic trees if
number of rotations is O(n).

What about in parallel?
For keys in random order
 N = newNode(ki)
 P = pointer to root of a binary tree
 While true do
 If *P = null then
 *P = N;
 Break;
 If N->key < *P->key then
 P = &(*P->left)
 else P = &(*P->right)

root

What about in parallel?
For keys in random order in parallel
 N = newNode(ki)
 P = pointer to root of a binary tree
 While true do
 If *P = null then
 *P = N; // priority write
 If (*P == N) Break;
 If N->key < *P->key then
 P = &(*P->left)
 else P = &(*P->right)

root

Is it write efficient?
No!

What about in parallel?
For j=1 to (lg n) sequentially
 for i=2j-1 to (2j - 1) in parallel // batch parallel with prefix doubling
 N = newNode(ki)
 P = pointer to root of a binary tree
 While true do
 If *P = null then
 *P = N; // arbitrary write
 If (*P == N) Break;
 If N->key < *P->key then
 P = &(*P->left)
 else P = &(*P->right)

root

O(n) writes
Some tricks to reduce span

Algorithms that can be reduced to sorting
1. 2d Convex hull = sorting + O(n) reads and writes : Overmars + Van Leeuwen
2. Priority tree = sorting + O(n) reads and writes : BGSH
3. Interval tree = sorting + O(n) reads and writes : BGSH

All are parallelizable.

Other write-efficient random incremental algorithms
Random incremental Delaunay triangulation: (recently shown to be parallel)

● Each vertex adds 6 triangles in expectation, builds a search structure
● Tricky since search structure is a DAG, and searches can meet up. Can’t

afford to write down what we searched.
● Developed a general DAG searching technique that requires O(log n) local

memory if DAG has bounded degree.

G

G

H
I

J JI

H

Method 2: Anchors
Selecting a subset of elements such that writes are proportional to the size of the
subset.

We use various different names (unfortunately):

● Centers : for graph connectivity
● Critical nodes : weight balanced trees, augmented values
● Partition nodes : tree contraction

Often involves starting with a random sample and then improving
by adding more.

Sometimes involves a tradeoff (fewer writes = more reads)

Example: Graph Connectivity
Goal: support a data structure that supports

1. Build: graph -> struct with fewer than n writes
2. Query: struct x vertex x vertex -> bool in reasonable time

We achieve O(n/k) writes and O(kn) reads for build, and O(k) time for queries
Only for bounded-degree graphs.

k is a parameter that can be adjusted (n = |V|)

Algorithm parallelizes.

Example: Graph Connectivity
Basic idea for finding centers (augmented random sampling):

1. Pick random “primary” centers with probability 1/k.
2. Systematic BFS from each point to first center
3. Split BFS tree for each center with “secondary centers” so that resulting

subtrees have size at most k

Example: Graph Connectivity
Using to build connectivity structure:

1. Run a connectivity algorithm using clusters as “supernodes”
2. Only stores info proportional to number of centers
3. For this step it is important that clusters are small (O(k)) so that we can list

their edges.

Example : Partitioning for parallel tree contraction
Input: a binary tree
Output: O(s) partition nodes that even split the tree

1. Take euler tour of the tree, and mark s nodes that partition it into runs of size
approximately n/s (Uses augmented random sample)

2. Within each run find the highest node (closest to root) in the run
3. Add these to marked nodes from step 1.

Only need to write out O(s) data.

Easy to parallelize.

Rose : Read only semi-external model
Assume the symmetric memory can fit some part of the data but not
some other part. The other part is stored in read-only memory.

I/O complexity: number of size B block
reads from the read-only memory

Graphs, for example:

● Vertices fit
● Edges do not

Recall that NVRAM is about 8x Denser than RAM

Some results:

Example : FRT, probabilistic tree embeddings
Previous parallel algorithms generate an O(n log n)
size LE-list data structure as a substep (every point
keeps a list of O(log n) other points and distances).

Idea, again, incrementally add points, only use part of
LE list that is generated so far. O(n) space.

Graph Metric

Some timings on actual NVRAM
48 cores across two chips (VLDB 20) – Sage uses “Rose” algorithms

Conclusions
1. Designing write-efficient algorithms is fun.
2. There seem to be a handful of techniques that come up often.
3. It does make a difference both in theory and practice.
4. There are several lower-bounds…did not show them

Word of caution for APOCS community:

“If it is interesting from an algorithms point of view, and the good algorithm make a
difference, it will be a while before it is of interest for practitioners”.

