1 of 1

I-MuPPET: Interactive Multi-Pigeon Pose Estimation and Tracking Urs Waldmann, Hemal Naik, Máté Nagy, Fumihiro Kano,

Iain D. Couzin, Oliver Deussen, and Bastian Goldlücke

Single Pigeon Data

Multi Pigeon Data

I-MuPPET

Evaluation

Comparison with DeepLabCut (DLC)

Comparison with 3D Bird Reconstruction (3DBR)

Quantitative results on pigeon data

RMSE: 3.2 px

PCK@0.05: 0.94

PCK@0.1: 0.97

Tracking performance

Inference speed

Inference speed up to 17 fps.

This work was supported by the DFG under Germany’s Excellence Strategy - EXC 2117 - 422037984.

Presented at the German Conference on Pattern Recognition (GCPR), Konstanz, September 2022.

References

[1] A. Mathis et al.: Deeplabcut: markerless pose estimation of user-defined body parts with deep learning. In Nat. Neurosci., 2018.

[2] M. Badger et al.: 3d bird reconstruction: A dataset, model, and shape recovery from a single view. In ECCV, 2020.

Pipeline

ID 1

ID 2

28 000 annotated RGB images

7 keypoints

Resolution of 1920 x 1080 x 3 pixels

Area of approx. 5x5 meters

2 video cameras

ID 1

ID 2

ID 3

Train with annotated single pigeon data.

Inference on multi-pigeon video sequences.

Model, iterations

RMSE [px]

I-MuPPET, 200K iter.

4.2

DLC, 200K iter. [1]

3.6 ∓ 0.2

DLC, 350/600K iter. [1]

3.2 ∓ 0.2

Model, epochs

PCK@0.05

PCK@0.1

I-MuPPET, 45 epochs

0.39

0.56

I-MuPPET, 60 epochs

0.36

0.54

3DBR, 60 epochs [2]

0.46

0.64

conf. score

HOTA

MOTA

MOTP

Rcll

Prcn

MT

ML

FPF

IDS

Frag

IDF1

0

0.53

0.48

0.61

0.83

0.70

0.64

0.01

0.99

24

292

0.75

0.5

0.57

0.65

0.61

0.83

0.83

0.64

0.01

0.49

8

278

0.82

0.75

0.57

0.67

0.61

0.83

0.84

0.64

0.01

0.44

11

280

0.83

0.9

0.56

0.68

0.61

0.82

0.85

0.64

0.01

0.39

14

277

0.83

7 900 frames

70 objects in total