1 of 38

Crop Ensemble Data Assimilation

J Gómez-Dans & Hongyuan Ma (UCL & NCEO)

2 of 38

Objectives

  1. Principle of the WOFOST model
  2. Introduce ensemble crop DA method
  3. Illustrate the crop model
  4. Demonstrate its use on maize in Northern Ghana

3 of 38

The WOFOST crop model

  1. Phenology​
  2. Light interception​
  3. Assimilation (Photosynthesis)​
  4. Respiration​
  5. Assimilate partitioning​
  6. Leaf area dynamics (growth and decay)​
  7. Evapotranspiration​
  8. Soil water balance and drought response​

Crop models simulate how crops develop as a function of meteo, soils and crop characteristics

4 of 38

WOFOST parameterisation

  • Use default tropical maize (Van Heemst 1988, Srivastava et al 2016)
  • Adapt a few parameters to account for
    • Low fertility soils
    • Low nutrients
  • We can only observe LAI & want yield
    • Leaf life span (SPAN) & initial crop weight (TDWI) strong controls on LAI
    • Max Leaf Assim rate: used to model stresses
  • Also need to define sowing date
  • Model used in water limited mode (WLM)

5 of 38

Uncertainty in models

  • Models are not perfect
    • (they are still useful! 😃)
    • Models are simplifications of reality
    • Incomplete understanding of processes
    • Drivers lack adequate spatial/temporal scale
    • Inherent variability of parameters (e.g. variation in genetics)
  • Sensible to treat model output as uncertain
  • Observations may reduce model uncertainty

We cannot expect the crop model to perfectly predict every field. But to give us a rough idea

Uncertainty

Huang et al (2019)

Martre et al (2019)

6 of 38

Models & observations: towards a happy marriage?

  • Models produce uncertain predictions
  • … use uncertain observations to improve model predictions
  • Weight predictions if consistent with observations
  • Probability is the tool to mix obs & model
  • Bayesian approach: Combine
    • Prior pdf (e.g, uncertain model)
    • Likelihood (uncertainty observations)
    • to update posterior pdf

Update an educated guess with some new evidence. Robust statistical methods are available for this

7 of 38

Variational methods (4DVAR) & Ensembles

  • Approximation of Bayes posterior pdf calculations:
    • Assume errors Gaussian
  • Convert problem into cost function minimisation:
    • Tweak model parameters to fit observations
    • Also constrained by prior!
    • “Tweaking”: gradient descent minimisation
  • Efficient implementation using ensembles

8 of 38

Ensemble crop DA method

9 of 38

The prior model ensemble. Different realisations of the model with different parameters, meteo drivers, etc.

Each ensemble member has a parameter set associated to it.

10 of 38

The observations of LAI over time

11 of 38

Match the ensemble members with the observations (considering uncertainties).

Can calculate parameter pdf by weighting ensemble parameters

12 of 38

Inferring parameters will also reduce uncertainty in yield predictions and other model outputs

13 of 38

The crop model ensemble

14 of 38

ERA5 meteo data drivers over study region

  • ERA5 Land dataset
  • Spatial resolution: ~10km
  • Hourly data aggregated to daily
  • A few grid cells cover area
    • very similar meteo drivers
  • Interfield crop variability
    • Local soils
    • Farm management practices
    • Local meteo effects

14

15 of 38

Effect of parameters

  • TDWI: Initial build up of LAI, max LAI
  • SPAN: length of LAI arc, max LAI
  • AMAX: max LAI & yield
  • SDOY: shift in time

Localise model so LAI is an effective constraint for yield

16 of 38

Try it out!

  • You can run the WOFOST crop model interactively
  • Change the parameters and see how the model predictions match up with
    • Observations of LAI
    • Observations of crop yield
    • You can explore all the other outputs of WOFOST too!

16

17 of 38

WOFOST parameter visualisation in yield/LAI space

18 of 38

WOFOST parameter visualisation in yield/LAI space

19 of 38

Application to maize in Ghana

20 of 38

The prior ensemble: LAI

Ensemble

Observations

21 of 38

The prior ensemble: Yield

22 of 38

Ensemble confronted with observations for one field

23 of 38

Yield prediction

  • Selected ensemble members associated weight
  • Uncertainty of yield distribution reduced
  • Large update of the mean of prior yield distribution
  • Assumption: the model encompasses LAIyield relationship
    • How unique over Ghana?
    • How unique over different years?
    • Limited validation!
  • Model parameters need to be adapted to field data variations:
    • Empirical linear yield correction
    • Better model parameterisation

24 of 38

Linear yield transformation

TRAINING

VALIDATION

25 of 38

Parameter interpretation

  • A posteriori parameters: what happened to the crop?
    • ⇒low AMAX_SCALAR⇒Stress
    • ⇒TDWI related to yield
    • Lower yield for late-planted crops
  • Parameter correlations complicate picture
  • Can also look at other model outputs
    • Canopy TRAnspiration (⇒ Photosynthesis)
    • Above ground biomass (AGB)

26 of 38

Biomass & canopy transpiration

27 of 38

Pixel-scale inversion: Yield & Yield Uncertainty

30 m

28 of 38

Pixel level results

  • Up to now, only field-averaged results shown
  • Planet data nominal spatial resolution: 3.7m
  • This gives opportunity to look at within-field variability
  • Each pixel is processed independently to give:
    • Yield @ 4m resolution
    • Parameters @4m resolution
    • Uncertainty estimate

29 of 38

Pixel inversion: Sowing date

30 of 38

Pixel inversion: Initial Seed Mass

31 of 38

Pixel inversion: Leaf lifespan

32 of 38

Pixel inversion: Assimilation scalar

33 of 38

Final remarks

  • Pragmatic DA method for large areas
  • Uses LAI as linkage between crop model & observations
  • Importance of crop model localisation:
    • Crop model parameter selection & calibration
    • Questions on generality (need other locations, years, …)
  • Update on crop model parameters due to LAI
    • LAI trajectories reflect yield within the field
    • Need to remove bias in the ensemble
      • Possible to improve parameters in ensemble
    • We explain crop development via 4 parameters
      • Low/high yield spatial distribution very local -> local access to nutrients

34 of 38

Spares

35 of 38

36 of 38

No linear correction, all fields

37 of 38

Remove outlier fields & apply linear correction

  • Remove fields where retrieved LAI inconsistent with field LAI (7 fields)
  • Apply empirically-derived linear correction factor
  • Per pixel results are worse than field-averaged processing
    • Within-field variability not well captured in field measurements?

37

38 of 38

Field

Difference

Estimated

In Situ

Min Estimated

Max estimated

5016ZOR

-166.93

1981.87

2148.80

1419.65

2716.95

5017ZOR

411.85

1949.51

1537.67

1348.65

4643.35

5057PAG

-356.16

2889.51

3245.67

1347.44

4687.77

7058CHE

1351.01

1573.47

222.47

945.91

2658.52

7059CHE

741.94

1581.28

839.33

669.78

2658.52

7062CHE

508.03

1180.33

672.30

289.02

2449.50

1067ZIN

1186.17

1869.20

683.03

1089.71

3365.07

7019ZOR

418.71

2186.98

1768.27

1095.31

3134.09

1055ZIN

1133.43

2577.76

1444.33

1894.32

3925.23

2002ALH

-9.75

1707.28

1717.03

-573.53

2389.78

2053KPA

-458.17

535.09

993.27

-325.03

1726.05

3075TAM

828.89

2818.45

1989.57

1407.03

4271.38

4020FUU

431.17

1206.34

775.17

487.38

1995.57

5002LAB

863.41

1404.85

541.43

458.50

2642.26

5011LAB

-200.84

1253.63

1454.47

555.34

2642.26

5012LAB

752.41

1679.41

927.00

711.24

2642.26

5014LAB

95.37

967.77

872.40

454.24

2816.72

5033TUG

728.91

1873.18

1144.27

598.01

3286.13

5036TUG

1145.24

2527.64

1382.40

1003.92

4206.03

5037TUG

1300.39

3991.49

2691.10

1058.43

4585.04

7014SAM

-220.25

963.08

1183.33

52.64

1798.44

7015ALH

782.72

1333.69

550.97

459.43

2530.23

7016ALH

451.99

1136.69

684.70

554.05

1977.64

7017SAM

786.71

1424.05

637.33

716.52

2611.43

7018ALH

654.13

1292.70

638.57

327.38

4377.06

7022FUU

-122.75

1324.11

1446.87

231.57

3164.52

7033FUU

1470.02

1660.76

190.73

1043.05

2732.72

7035FUU

-211.31

1138.82

1350.13

644.06

1689.41

7036FUU

217.45

1107.38

889.93

201.47

1899.97

7069ZIN

1001.65

2184.47

1182.82

1615.62

3163.48

7070ZIN

432.24

1642.80

1210.57

974.44

2425.09

7071ZIN

116.08

1489.02

1372.93

624.39

3001.30

7072ZIN

1037.76

2313.53

1275.77

1133.67

3580.53

7074ZIN

1577.97

2616.34

1038.37

1885.93

3819.65

3074TAM

1879.08

2318.91

439.83

1155.12

3927.59

1061ZIN

-192.33

1614.54

1806.87

643.86

3270.47

1056ZIN

1449.15

2501.55

1052.40

1721.13

3225.95

7020YAM

-429.96

2363.10

2793.07

1052.98

4589.08