Crop Ensemble Data Assimilation
J Gómez-Dans & Hongyuan Ma (UCL & NCEO)
Objectives
The WOFOST crop model
⇒Crop models simulate how crops develop as a function of meteo, soils and crop characteristics
WOFOST parameterisation
Uncertainty in models
⇒We cannot expect the crop model to perfectly predict every field. But to give us a rough idea
Uncertainty
Huang et al (2019)
Martre et al (2019)
Models & observations: towards a happy marriage?
Update an educated guess with some new evidence. Robust statistical methods are available for this
Variational methods (4DVAR) & Ensembles
Ensemble crop DA method
The prior model ensemble. Different realisations of the model with different parameters, meteo drivers, etc.
Each ensemble member has a parameter set associated to it.
The observations of LAI over time
Match the ensemble members with the observations (considering uncertainties).
Can calculate parameter pdf by weighting ensemble parameters
Inferring parameters will also reduce uncertainty in yield predictions and other model outputs
The crop model ensemble
ERA5 meteo data drivers over study region
14
Effect of parameters
Localise model so LAI is an effective constraint for yield
Try it out!
16
WOFOST parameter visualisation in yield/LAI space
WOFOST parameter visualisation in yield/LAI space
Application to maize in Ghana
The prior ensemble: LAI
Ensemble
Observations
The prior ensemble: Yield
Ensemble confronted with observations for one field
Yield prediction
Linear yield transformation
TRAINING
VALIDATION
Parameter interpretation
Biomass & canopy transpiration
Pixel-scale inversion: Yield & Yield Uncertainty
30 m
Pixel level results
Pixel inversion: Sowing date
Pixel inversion: Initial Seed Mass
Pixel inversion: Leaf lifespan
Pixel inversion: Assimilation scalar
Final remarks
Spares
No linear correction, all fields
Remove outlier fields & apply linear correction
37
Field | Difference | Estimated | In Situ | Min Estimated | Max estimated |
5016ZOR | -166.93 | 1981.87 | 2148.80 | 1419.65 | 2716.95 |
5017ZOR | 411.85 | 1949.51 | 1537.67 | 1348.65 | 4643.35 |
5057PAG | -356.16 | 2889.51 | 3245.67 | 1347.44 | 4687.77 |
7058CHE | 1351.01 | 1573.47 | 222.47 | 945.91 | 2658.52 |
7059CHE | 741.94 | 1581.28 | 839.33 | 669.78 | 2658.52 |
7062CHE | 508.03 | 1180.33 | 672.30 | 289.02 | 2449.50 |
1067ZIN | 1186.17 | 1869.20 | 683.03 | 1089.71 | 3365.07 |
7019ZOR | 418.71 | 2186.98 | 1768.27 | 1095.31 | 3134.09 |
1055ZIN | 1133.43 | 2577.76 | 1444.33 | 1894.32 | 3925.23 |
2002ALH | -9.75 | 1707.28 | 1717.03 | -573.53 | 2389.78 |
2053KPA | -458.17 | 535.09 | 993.27 | -325.03 | 1726.05 |
3075TAM | 828.89 | 2818.45 | 1989.57 | 1407.03 | 4271.38 |
4020FUU | 431.17 | 1206.34 | 775.17 | 487.38 | 1995.57 |
5002LAB | 863.41 | 1404.85 | 541.43 | 458.50 | 2642.26 |
5011LAB | -200.84 | 1253.63 | 1454.47 | 555.34 | 2642.26 |
5012LAB | 752.41 | 1679.41 | 927.00 | 711.24 | 2642.26 |
5014LAB | 95.37 | 967.77 | 872.40 | 454.24 | 2816.72 |
5033TUG | 728.91 | 1873.18 | 1144.27 | 598.01 | 3286.13 |
5036TUG | 1145.24 | 2527.64 | 1382.40 | 1003.92 | 4206.03 |
5037TUG | 1300.39 | 3991.49 | 2691.10 | 1058.43 | 4585.04 |
7014SAM | -220.25 | 963.08 | 1183.33 | 52.64 | 1798.44 |
7015ALH | 782.72 | 1333.69 | 550.97 | 459.43 | 2530.23 |
7016ALH | 451.99 | 1136.69 | 684.70 | 554.05 | 1977.64 |
7017SAM | 786.71 | 1424.05 | 637.33 | 716.52 | 2611.43 |
7018ALH | 654.13 | 1292.70 | 638.57 | 327.38 | 4377.06 |
7022FUU | -122.75 | 1324.11 | 1446.87 | 231.57 | 3164.52 |
7033FUU | 1470.02 | 1660.76 | 190.73 | 1043.05 | 2732.72 |
7035FUU | -211.31 | 1138.82 | 1350.13 | 644.06 | 1689.41 |
7036FUU | 217.45 | 1107.38 | 889.93 | 201.47 | 1899.97 |
7069ZIN | 1001.65 | 2184.47 | 1182.82 | 1615.62 | 3163.48 |
7070ZIN | 432.24 | 1642.80 | 1210.57 | 974.44 | 2425.09 |
7071ZIN | 116.08 | 1489.02 | 1372.93 | 624.39 | 3001.30 |
7072ZIN | 1037.76 | 2313.53 | 1275.77 | 1133.67 | 3580.53 |
7074ZIN | 1577.97 | 2616.34 | 1038.37 | 1885.93 | 3819.65 |
3074TAM | 1879.08 | 2318.91 | 439.83 | 1155.12 | 3927.59 |
1061ZIN | -192.33 | 1614.54 | 1806.87 | 643.86 | 3270.47 |
1056ZIN | 1449.15 | 2501.55 | 1052.40 | 1721.13 | 3225.95 |
7020YAM | -429.96 | 2363.10 | 2793.07 | 1052.98 | 4589.08 |