Java SCORE Overview

v0.6
June 2022

Why Java and the JVM?

Pros
e Reliable and mature implementation
e Strong type system
e Extensive Java tooling support
e JIT performance
e Java language popularity
e Sandbox, Sandbox, Sandbox!

Cons
e Non-deterministic operation inherently

) ICONLOOP

Bytecode Instrumentation

User Code i>

p
SCORE API }
4

(dunnny)
\
4

Standard Java Class Library }

-

) ICONLOOP

)

Bytecode
Optimizer

—

_

)

Bytecode
Transfor
mer

_

< Deployment >

:> Transformed
User Code

i

-

SCORE API I Shadow JCL

Y

Standard Java Class Library

AN

Y

Java Virtual Machine

I\

Bytecode Instrumentation

Bytecode Optimizer

Extracts all annotations (@External,...) and builds a APIs mapping
Generates the body of methods tagged with @EventLog

Removes unreachable methods

Renames all the class, method, and field names to smaller names
(a.k.a. obfuscation) to reduce the deployment cost (optional)

Bytecode Transformer

Checks if bytecode uses only APIs which are in whitelist
Remaps reference to JCL classes into shadow classes
Inserts code for charging instruction cost

Removes <clinit>’, and many other tasks...

) ICONLOOP

SCORE Structure Comparison

Name

External decorator

Payable decorator

Eventlog decorator

fallback signature
SCORE initialize

Default parameters

NLOOP

Python

@external
@external(readonly=True)
@payable

@eventlog
@eventlog(indexed=1)

def fallback(self)

override on_install(...) method

native language support

Java

@External
@External(readonly=true)
@Payable

@EventLog
@EventLog(indexed=1)

public void fallback()

define a public constructor

@Optional

SCORE APIs Comparison

Python
self.address

self.block.height

self.msg.sender

self.tx.hash

self.icx.transfer()
revert()

create_address_with_key()

ONLOOP

Java
Context

Context

Context

Context

Context

Context

Context.

.getAddress()

.getBlockHeight ()

.getCaller()

.getTransactionHash()

.transfer()

.revert()

getAddressFromKey()

Description
The current SCORE address

The current block height

The address of the account who called this
function

The transaction hash
ICX transfer function

Reverts the transaction and breaks

Returns the address that is associated with the
given public key

Component Diagram

Transaction &
Result Manager

Jojnosxg uonoesued |

Transfer
Handler

Contract
Handler

External
Handler

) ICONLOOP

Python
Executor

JavaEE Manager

Java
Executor

Invoking a external method of other SCOREsSs

Use Context.call()

// [package score.Context]
public static Object call(Address targetAddress, String method,
Object... params);

public static Object call(BigInteger value, Address targetAddress,
String method, Object... params);

// Example
if (_to.isContract()) {

Context.call(_to, “tokenFallback”, _from, _value, dataBytes);
}

;ONLOOP

Error Handling

e Uncatchable exceptions
o Non-deterministic system errors (eg. OOM or I/O errors)
m shall not be visible to SCORE (uncatchable), otherwise SCORE’s
behavior may depend on the error.
o Deterministic, but shall not be catchable
m OutOfStep, StackOverflow
e Catchable exceptions
o lllegalArgumentException
m {Contract|Method}NotFound, OutOfBalance, InvalidParameter, etc
o ScoreRevertException
m Caused by Context.revert()
) ICONLOOP

Support List/Map return types in @External method

e Provide List.of() and Map.of()
o Convenience static factory methods for creating unmodifiable instances
o JEP 269: Convenience Factory Methods for Collections
o Fully compliant with the existing Python SCOREs

@External (readonly=true)
public List<Address> getConfirmations(BigInteger _transactionlId) {

Address[] confirmations = new Address[count];

return List.of(confirmations);

}

) ICONLOOP

http://openjdk.java.net/jeps/269

Storage Model

Object Graph
e Serializes all live objects that are reachable from static roots
e Provides an illusion like this:
o A program starts and then runs forever.
e Cons: inefficient as it must be stored as a whole even if it is partially changed

Key-Value Storage
e Supports same interfaces as Python SCORE does
o VarDB, ArrayDB and DictDB

) ICONLOOP

Object Graph

..

Automatic Object Graph

Code
i @OF—— User @

class User { . Ly

int count; « count 5

byte[] data; . « data > byte[]

Address owner; : » owner > Address @
}
static User first; Serialize

\/
@ @ ® @

..

) ICONLOOP

Variable DB

// VarDB<BigInteger> counter = ...
var counter = Context.newVarDB("counter", BigInteger.class);

counter.set(BigInteger.ZERO);
counter.set(counter.get().add(BigInteger.ONE));

) ICONLOOP

Array DB

// ArrayDB<Address> addrList = ...
var addrlList = Context.newArrayDB("addrList", Address.class);

addrList.add(Context.getAddress());
Context.require(addrlList.size() == 1);

Context.require(addrList.get(0).equals(Context.getAddress()));

addrList.set(0, Context.getOwner());
Context.require(addrList.get(0).equals(Context.getOwner()));

(J ICONLOOP

Dictionary DB

DictDB<Address, BigInteger> balances
= Context.newDictDB("balances", BigInteger.class);

var balance = BigInteger.valueOf(1 000 000);

balances.set(Context.getOwner(), balance);
Context.require(balances.get(Context.getOwner()).equals(balance));

) ICONLOOP

Branch DB

e A branch DB behaves as branches to sub-DBs

BranchDB<BigInteger, DictDB<Address, Boolean>> confirmations
= Context.newBranchDB("confirmations", Boolean.class);

var txID = BiglInteger.ZERO;

confirmations.at(txID).set(Context.getCaller(), true);
Context.require(confirmations.at(txID).get(Context.getCaller()));

) ICONLOOP

Object Serialization in DB (1)

e A DB can store an object of a CustomClass, if the class implements the
following codec methods.

public static void writeObject(ObjectWriter w, CustomClass v) {

¥

public static CustomClass readObject(ObjectReader r) {

¥

) ICONLOOP

Object Serialization in DB (2)

public class Transaction {
public static void writeObject(ObjectWriter w, Transaction t) {
w.writelListOf(t.from, t.to, t.value);

}

public static Transaction readObject(ObjectReader r) {

r.beginList();

Transaction t = new Transaction(
r.read(Address.class),
r.read(Address.class),
r.read(BigInteger.class)

)s

r.end();

return t;

}

) ICONLOOP

Object Serialization in DB (3)

DictDB<BigInteger, Transaction> transactions
= Context.newDictDB("transactions"”, Transaction.class);

var txl1 = new Transaction(
Context.getOrigin(),
Context.getOwner(),
BigInteger.valueOf(1l 000 000)

)

transactions.set(BigInteger.valueOf(1), tx1);

var tx2 = transactions.get(BigInteger.valueOf(1));
Context.require(txl.equals(tx2));

) ICONLOOP

References

SCORE API document

o https://www.javadoc.io/doc/foundation.icon/javaee-api
gradle-javaee-plugin project

o https://github.com/icon-project/gradle-javaee-plugin
Java SCORE examples project

o https://github.com/icon-project/java-score-examples
javaee project

o https://qithub.com/icon-project/goloop/tree/master/javaee

goloop CLI commands
o https://qithub.com/icon-project/qgoloop/blob/master/doc/goloop cli.md

) ICONLOOP

https://www.javadoc.io/doc/foundation.icon/javaee-api
https://github.com/icon-project/gradle-javaee-plugin
https://github.com/icon-project/java-score-examples
https://github.com/icon-project/goloop/tree/master/javaee
https://github.com/icon-project/goloop/blob/master/doc/goloop_cli.md

