
Java SCORE Overview
v0.6

June 2022

Why Java and the JVM?

Pros
● Reliable and mature implementation
● Strong type system
● Extensive Java tooling support
● JIT performance
● Java language popularity
● Sandbox, Sandbox, Sandbox!

Cons
● Non-deterministic operation inherently

Bytecode Instrumentation

User Code

Standard Java Class Library

SCORE API
(dummy)

Transformed
User Code

SCORE API

Java Virtual Machine

Shadow JCL

Standard Java Class Library

Bytecode
Transfor

mer

Bytecode
Optimizer

Deployment

Bytecode Instrumentation
Bytecode Optimizer
● Extracts all annotations (@External,...) and builds a APIs mapping
● Generates the body of methods tagged with @EventLog
● Removes unreachable methods
● Renames all the class, method, and field names to smaller names

(a.k.a. obfuscation) to reduce the deployment cost (optional)

Bytecode Transformer
● Checks if bytecode uses only APIs which are in whitelist
● Remaps reference to JCL classes into shadow classes
● Inserts code for charging instruction cost
● Removes ‘<clinit>’, and many other tasks...

SCORE Structure Comparison
Name Python Java

External decorator @external @External

@external(readonly=True) @External(readonly=true)

Payable decorator @payable @Payable

Eventlog decorator @eventlog @EventLog

@eventlog(indexed=1) @EventLog(indexed=1)

fallback signature def fallback(self) public void fallback()

SCORE initialize override on_install(...) method define a public constructor

Default parameters native language support @Optional

SCORE APIs Comparison
Python Java Description

self.address Context.getAddress() The current SCORE address

self.block.height Context.getBlockHeight() The current block height

self.msg.sender Context.getCaller() The address of the account who called this
function

self.tx.hash Context.getTransactionHash() The transaction hash

self.icx.transfer() Context.transfer() ICX transfer function

revert() Context.revert() Reverts the transaction and breaks

create_address_with_key() Context.getAddressFromKey() Returns the address that is associated with the
given public key

Component Diagram

Transaction E
xecutor

Transaction &
Result Manager

Contract
Handler

Transfer
Handler

External
Handler

Python
Executor

JavaEE Manager

IP
C

Python
ExecutorPython

Executor

Python
Execut

or

Python
Execut

or
Java

Executor

Invoking a external method of other SCOREs
● Use Context.call()

// [package score.Context]
public static Object call(Address targetAddress, String method,
 Object… params);

public static Object call(BigInteger value, Address targetAddress,
 String method, Object… params);

// Example
if (_to.isContract()) {
 Context.call(_to, “tokenFallback”, _from, _value, dataBytes);
}

Error Handling
● Uncatchable exceptions

○ Non-deterministic system errors (eg. OOM or I/O errors)
■ shall not be visible to SCORE (uncatchable), otherwise SCORE’s

behavior may depend on the error.
○ Deterministic, but shall not be catchable

■ OutOfStep, StackOverflow
● Catchable exceptions

○ IllegalArgumentException
■ {Contract|Method}NotFound, OutOfBalance, InvalidParameter, etc

○ ScoreRevertException
■ Caused by Context.revert()

Support List/Map return types in @External method
● Provide List.of() and Map.of()

○ Convenience static factory methods for creating unmodifiable instances
○ JEP 269: Convenience Factory Methods for Collections
○ Fully compliant with the existing Python SCOREs

@External(readonly=true)
public List<Address> getConfirmations(BigInteger _transactionId) {
 ...
 Address[] confirmations = new Address[count];
 ...
 return List.of(confirmations);
}

http://openjdk.java.net/jeps/269

Storage Model

Object Graph
● Serializes all live objects that are reachable from static roots
● Provides an illusion like this:

○ A program starts and then runs forever.
● Cons: inefficient as it must be stored as a whole even if it is partially changed

Key-Value Storage
● Supports same interfaces as Python SCORE does

○ VarDB, ArrayDB and DictDB

Object Graph

Variable DB
// VarDB<BigInteger> counter = ...
var counter = Context.newVarDB("counter", BigInteger.class);

counter.set(BigInteger.ZERO);
counter.set(counter.get().add(BigInteger.ONE));

Array DB
// ArrayDB<Address> addrList = ...
var addrList = Context.newArrayDB("addrList", Address.class);

addrList.add(Context.getAddress());
Context.require(addrList.size() == 1);
Context.require(addrList.get(0).equals(Context.getAddress()));

addrList.set(0, Context.getOwner());
Context.require(addrList.get(0).equals(Context.getOwner()));

Dictionary DB
DictDB<Address, BigInteger> balances
 = Context.newDictDB("balances", BigInteger.class);

var balance = BigInteger.valueOf(1_000_000);
balances.set(Context.getOwner(), balance);
Context.require(balances.get(Context.getOwner()).equals(balance));

Branch DB
● A branch DB behaves as branches to sub-DBs

BranchDB<BigInteger, DictDB<Address, Boolean>> confirmations
 = Context.newBranchDB("confirmations", Boolean.class);

var txID = BigInteger.ZERO;
confirmations.at(txID).set(Context.getCaller(), true);
Context.require(confirmations.at(txID).get(Context.getCaller()));

Object Serialization in DB (1)
● A DB can store an object of a CustomClass, if the class implements the

following codec methods.

public static void writeObject(ObjectWriter w, CustomClass v) {
 ...
}

public static CustomClass readObject(ObjectReader r) {
 ...
}

public class Transaction {
 public static void writeObject(ObjectWriter w, Transaction t) {
 w.writeListOf(t.from, t.to, t.value);
 }

 public static Transaction readObject(ObjectReader r) {
 r.beginList();
 Transaction t = new Transaction(
 r.read(Address.class),
 r.read(Address.class),
 r.read(BigInteger.class)
);
 r.end();
 return t;
 }
}

Object Serialization in DB (2)

Object Serialization in DB (3)
DictDB<BigInteger, Transaction> transactions
 = Context.newDictDB("transactions", Transaction.class);

var tx1 = new Transaction(
 Context.getOrigin(),
 Context.getOwner(),
 BigInteger.valueOf(1_000_000)
);
transactions.set(BigInteger.valueOf(1), tx1);

var tx2 = transactions.get(BigInteger.valueOf(1));
Context.require(tx1.equals(tx2));

References
● SCORE API document

○ https://www.javadoc.io/doc/foundation.icon/javaee-api
● gradle-javaee-plugin project

○ https://github.com/icon-project/gradle-javaee-plugin
● Java SCORE examples project

○ https://github.com/icon-project/java-score-examples
● javaee project

○ https://github.com/icon-project/goloop/tree/master/javaee
● goloop CLI commands

○ https://github.com/icon-project/goloop/blob/master/doc/goloop_cli.md

https://www.javadoc.io/doc/foundation.icon/javaee-api
https://github.com/icon-project/gradle-javaee-plugin
https://github.com/icon-project/java-score-examples
https://github.com/icon-project/goloop/tree/master/javaee
https://github.com/icon-project/goloop/blob/master/doc/goloop_cli.md

