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Zoom etiquettes

We appreciate it
if you keep videos on!

● More visual feedback for us
to adjust materials

● Better learning environment
● Better sense of who you’re with

in class!
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Deploying on Google Cloud Tutorials
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http://www.youtube.com/watch?v=fw6NMQrYc6w


Agenda
1. Distributed training
2. Breakout exercise
3. Model offline evaluation
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Lecture note is on course website / syllabus



Distributed training
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Ways a model can scale

1. In complexity: architecture, number of parameters
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Ways a model can scale

1. In complexity: architecture, number of parameters
2. In prediction traffic
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Ways a model can scale

1. In complexity: architecture, number of parameters
2. In prediction traffic
3. In number of models
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Rise of Incredibly Large DL Models

9
Illustration by Towards Data Science

https://towardsdatascience.com/the-rise-of-cognitive-ai-a29d2b724ccc


GPU Usage
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Rhu, M., et al, vDNN: Virtualized Deep Neural Networks for Scalable, Memory-Efficient Neural Network Design

https://arxiv.org/pdf/1602.08124.pdf


GPU Usage
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Rhu, M., et al, vDNN: Virtualized Deep Neural Networks for Scalable, Memory-Efficient Neural Network Design

The size of SOTA language models is growing by at least a factor of 10 
every year. This outpaces the growth of GPU memory!

https://arxiv.org/pdf/1602.08124.pdf


Issues

● A smaller batch size can lead to
○ More iterations necessary to converge
○ Decreased stability

-> What about when the model itself doesn’t fit into GPU memory? Or when 
even a single data sample doesn’t fit into GPU memory?
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Distributed Training
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Illustration by Towards Data Science

1 https://developer.nvidia.com/gtc/2020/video/s21496-vid 
2 https://lambdalabs.com/blog/demystifying-gpt-3/ 

700GB memory to store 
the parameters; 355 
GPU-years and $4.6M 
for a single training run 
on NVIDIA V100 GPUs2

https://towardsdatascience.com/the-rise-of-cognitive-ai-a29d2b724ccc
https://developer.nvidia.com/gtc/2020/video/s21496-vid
https://lambdalabs.com/blog/demystifying-gpt-3/


Distributed Training
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Illustration by Towards Data Science

8-way model parallelism, 64-way 
data parallelism on 512 GPUs1

1 https://developer.nvidia.com/gtc/2020/video/s21496-vid 
2 https://lambdalabs.com/blog/demystifying-gpt-3/ 

700GB memory to store 
the parameters; 355 
GPU-years and $4.6M 
for a single training run 
on NVIDIA V100 GPUs2

https://towardsdatascience.com/the-rise-of-cognitive-ai-a29d2b724ccc
https://developer.nvidia.com/gtc/2020/video/s21496-vid
https://lambdalabs.com/blog/demystifying-gpt-3/


Distributed Training
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Data parallelism Model parallelism



Data Parallelism for Large Batch Training

Split the data across devices

Each device sees a fraction of the batch

Each device replicates the model

Each device replicates the optimizer



GPU 1 GPU 2

Replicate model across devices

GPUs could be on same or multiple nodes



GPU 1 GPU 2

To push in a batch of data



GPU 1 GPU 2

Split batch across devices



GPU 1 GPU 2

Parallel forward passes



GPU 1 GPU 2

Parallel forward passes



GPU 1 GPU 2

Backpropagate gradients



GPU 1 GPU 2

Backpropagate gradients



GPU 1 GPU 2

All-reduce operation



GPU 1 GPU 2

All devices do the same gradient updates



GPU 1 GPU 2

All parameters stay synchronized!



Data Parallelism

27
Scaling SGD Batch Size to 32K for ImageNet Training (You et al., 2017)

Split the data across devices

Each device sees a fraction of the batch
Each device replicates the model
Each device replicates the optimizer

GPT-3: 3.2M batch size

1M samples

● 1000 samples/batch/machine
● 1 machine: 1000 batches
● 100 machines: 10 batches

https://digitalassets.lib.berkeley.edu/techreports/ucb/text/EECS-2017-156.pdf


Data Parallelism

28
Scaling SGD Batch Size to 32K for ImageNet Training (You et al., 2017)

Split the data across devices

Each device sees a fraction of the batch
Each device replicates the model
Each device replicates the optimizer

GPT-3: 3.2M batch size

Challenge 1: Learning rate

● Too small -> too long to converge
● Too large -> unstable learning

https://digitalassets.lib.berkeley.edu/techreports/ucb/text/EECS-2017-156.pdf


Data Parallelism: LR Scaling
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Scaling SGD Batch Size to 32K for ImageNet Training (You et al., 2017)

Split the data across devices

Each device sees a fraction of the batch
Each device replicates the model
Each device replicates the optimizer

GPT-3: 3.2M batch size

https://digitalassets.lib.berkeley.edu/techreports/ucb/text/EECS-2017-156.pdf


Data Parallelism: Gradient Updates
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Challenge 2: How to aggregate gradient updates?

● Synchronous: have to wait for stragglers
● Asynch: gradients become stale

Image from Distributed TensorFlow (Jim Dowling, O’Reilly 2017)

https://www.oreilly.com/content/distributed-tensorflow/


Solution: Model Parallelism for Large Model Training

Split the model across devices

Each device runs a fragment of the model

Credit: Fedus et al. (Switch Transformers: Scaling to Trillion Parameter Models with Simple and Efficient Sparsity



Model Parallelism: Naive



Model Parallelism: Naive

GPU 1 GPU 2 GPU 3 GPU 4



GPU 1 GPU 2 GPU 3 GPU 4

Model Parallelism: Naive



GPU 1 GPU 2 GPU 3 GPU 4

idle

Model Parallelism: Naive



GPU 1 GPU 2 GPU 3 GPU 4

idle idle

Model Parallelism: Naive



GPU 1 GPU 2 GPU 3 GPU 4

idle idleidle

Model Parallelism: Naive



Pipeline Parallelism
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Pipeline Parallelism

Illustration by Google AI Blog (GPipe)

https://ai.googleblog.com/2019/03/introducing-gpipe-open-source-library.html


Pipeline Parallelism

GPU 1 GPU 2 GPU 3 GPU 4

Split mini-batch into sequential micro-batches



Pipeline Parallelism

GPU 1 GPU 2 GPU 3 GPU 4

F0,0



Pipeline Parallelism

GPU 1 GPU 2 GPU 3 GPU 4GPU 1 GPU 2GPU 1 GPU 2

F0,1 F0,0



Pipeline Parallelism

GPU 1 GPU 2 GPU 3 GPU 4GPU 1 GPU 2 GPU 3

F0,2 F0,0F0,1



Pipeline Parallelism

GPU 1 GPU 2 GPU 3 GPU 4

F0,3 F0,1F0,2 F0,0



GPU 1 GPU 2

GPU 1

GPU 2

Pipeline Parallelism Distributed Tensor Computation



Combining Ideas!
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Illustration by DeepSpeed

https://www.deepspeed.ai/tutorials/pipeline/


Tensor Parallelism
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Illustration by NVIDIA (Megatron-LM)

https://arxiv.org/abs/2104.04473


Credit: Fedus et al. (Switch Transformers: Scaling to Trillion Parameter Models with Simple and Efficient Sparsity)



Gradient Checkpointing

GPU 1

Trade off memory for compute



Gradient Checkpointing

GPU 1

Don’t store some activations in forward pass



GPU 1

Backpropagate



GPU 1

Don’t have activations!



GPU 1

Recompute activations from checkpoint



GPU 1

Backpropagate



GPU 1

Backpropagate



GPU 1

Backpropagate



GPU 1

Backpropagate



GPU 1

Backpropagate



GPU 1

Backpropagate



Breakout exercise
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What went wrong with Zillow Offers?

61
https://www.nytimes.com/2021/11/02/business/zillow-q3-earnings-home-flipping-ibuying.html (November, 2021)

https://www.nytimes.com/2021/11/02/business/zillow-q3-earnings-home-flipping-ibuying.html


Blaming game

1. Prophet
2. Kaggle-style data science
3. Leadership
4. ML/DS team

62



What went wrong with Zillow Offers?

1. Use ML to predict home prices
2. Use predicted prices to flip houses
3. ML models over-predict house prices
4. Buy houses at higher prices
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Group of 5, 10 minutes

1. What might be the causes of ML models over-predicting house prices?
a. Hint: what market conditions have changed in the last 2 years?

2. If you were on their team, what would you have done to prevent this 
problem?
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ML offline evaluation

65
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Model evaluation

● Offline evaluation: before deployed
● Online evaluation: after deployed
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Test in production. Will cover this later!



Model offline evaluation

● Baselines
● Evaluation methods
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Baselines

● Numbers by themselves mean little
● Task: binary classification, 90% POSITIVE, 10% NEGATIVE
● F1 score: 0.90
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Is it model good or bad?



Model selection: baselines

● Random baseline
○ Predict at random:

■ uniform
■ following label distribution
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Model selection: baselines

● Random baseline
○ Predict at random:

■ uniform
■ following label distribution
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● Example: misinformation classification
○ n = 1,000,000
○ 99% negative (label = 0)
○ 1% positive (label = 1)

Accuracy F1

Random [uniform] 0.5 ?

Random
[label distribution]

0.98 ?



Model selection: baselines

● Random baseline
○ Predict at random:

■ uniform
■ following label distribution
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● Example: misinformation classification
○ n = 1,000,000
○ 99% negative (label = 0)
○ 1% positive (label = 1)

Accuracy F1

Random [uniform] 0.5 0.02

Random
[label distribution]

0.98 0.01



Model selection: baselines

● Random baseline
○ Predict at random:

■ uniform
■ following label distribution

● Zero rule baseline
○ Always predict the most common class
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● Example: misinformation classification
○ n = 1,000,000
○ 99% negative (label = 0)
○ 1% positive (label = 1)

Accuracy F1

Random [uniform] 0.5 0.02

Random
[label distribution]

0.98 0.01

Most common
[preds = [0] * n]

? ?



Model selection: baselines

● Random baseline
○ Predict at random:

■ uniform
■ following label distribution

● Zero rule baseline
○ Always predict the most common class

● Simple heuristics
○ E.g.: classify tweets based on whether 

they contain links to unreliable sources
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● Example: misinformation classification
○ n = 1,000,000
○ 99% negative (label = 0)
○ 1% positive (label = 1)

Accuracy F1

Random [uniform] 0.5 0.02

Random
[label distribution]

0.98 0.01

Most common
[preds = [0] * n]

? ?

Simple heuristics ? ?



Model selection: baselines

● Random baseline
○ Predict at random:

■ uniform
■ following label distribution

● Zero rule baseline
○ Always predict the most common class

● Simple heuristics
○ E.g.: classify tweets based on whether 

they contain links to unreliable sources
● Human baseline

○ What’s human-level performance?

75

● Example: misinformation classification
○ n = 1,000,000
○ 99% negative (label = 0)
○ 1% positive (label = 1)

Accuracy F1

Random [uniform] 0.5 0.02

Random
[label distribution]

0.98 0.01

Most common
[preds = [0] * n]

? ?

Simple heuristics ? ?

Human expert ? ?



Model selection: baselines

● Random baseline
○ Predict at random:

■ uniform
■ following label distribution

● Zero rule baseline
○ Always predict the most common class

● Simple heuristics
○ E.g.: classify tweets based on whether 

they contain links to unreliable sources
● Human baseline

○ What’s human-level performance?
● Existing solutions

76

● Example: misinformation classification
○ n = 1,000,000
○ 99% negative (label = 0)
○ 1% positive (label = 1)

Accuracy F1

Random [uniform] 0.5 0.02

Random
[label distribution]

0.98 0.01

Most common
[preds = [0] * n]

? ?

Simple heuristics ? ?

Human expert ? ?

3rd party API ? ?



Evaluation methods

1. Perturbation Tests
2. Invariance Tests
3. Directional Expectation Tests
4. Model Calibration
5. Confidence Measurement
6. Slice-based Evaluation
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Perturbation tests

● Problem: users input might contain noise, making it different from test data
○ Examples:

■ Speech recognition: background noise
■ Object detection: different lighting
■ Text inputs: typos, intentional misspelling (e.g. looooooooong)

○ Model does well on test set, but fails in production
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Perturbation tests

● Motivation: users input might contain noise, making it different from test data
● Idea: randomly add small noise to test data to see how much outputs change
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Perturbation tests

● Motivation: users input might contain noise, making it different from test data
● Idea: randomly add small noise to test data to see how much outputs change
● The more sensitive the model is to noise:

○ The harder it is to maintain
○ The more vulnerable the model is to adversarial attacks
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Perturbation tests

● Motivation: users input might contain noise, making it different from test data
● Idea: randomly add small noise to test data to see how much outputs change
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If small changes cause model’s performance to fluctuate, 
you might want to make model more robust:
● Add noise to training data
● Add more training data
● Choose another model



● Motivation: some input changes shouldn’t lead to changes in outputs
○ Changing race/gender info shouldn’t change predicted approval outcome
○ Changing name shouldn’t affect resume screening results

Invariance tests

82
Disparity in home lending costs minorities millions, researchers find (CBS News, 2019)

https://www.cbsnews.com/news/mortgage-discrimination-black-and-latino-paying-millions-more-in-interest-study-shows/


● Motivation: some input changes shouldn’t lead to changes in outputs
● Idea: keep certain features the same, but randomly change values of 

sensitive features

Invariance tests
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If changing sensitive features can change model’s 
outputs, there might be biases!



● Motivation: some changes to inputs should cause predictable changes in 
outputs
○ E.g. when predicting housing prices:

■ Increasing lot size shouldn’t decrease the predicted price
■ Decreasing square footage shouldn’t increase the predicted price

Directional expectation tests
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● Motivation: some changes to inputs should cause predictable changes in 
outputs

● Idea: keep most features the same, but change certain features to see if 
outputs change predictably

Directional expectation tests
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If increasing lot size consistently reduces the predicted 
price, you might want to investigate why!



Model calibration

“One of the most important tests of a forecast — I would argue that it is the 
single most important one — is called calibration.”

Nate Silver, The Signal and the Noise
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Model calibration

● If you predict team A wins in A vs. B match with 60% probability:
○ In 100 A vs. B match, A should win 60% of the time!
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Among all samples predicted POSITIVE with propa 80%,
80% of them should be POSITIVE

Need to ensure the top class is correct on average

.

Image from Probability calibration (sklearn)

score

Model calibration: binary case

https://scikit-learn.org/stable/modules/calibration.html


Model calibration: recsys

● Recommend movies to a user who 
watches 70% comedy, 30% action

● What happens if you recommend most 
likely watched movies?

89

Movie title Watch probability

Comedy 1 0.8

Comedy 2 0.73

Comedy 3 0.68

Comedy 4 0.67

Action 1 0.29

Action 2 0.2

Science fiction 0.04



Model calibration: recsys

● Recommend movies to a user who 
watches 70% comedy, 30% action

● What happens if you recommend most 
likely watched movies?

90

Movie title Watch probability

Comedy 1 0.8

Comedy 2 0.73

Comedy 3 0.68

Comedy 4 0.67

Action 1 0.29

Action 2 0.2

Science fiction 0.04

Need to calibrate recommendations to 
include 70% comedy, 30% action



Model calibration: CTR

● 2 ads: A & B
● Model predicts click probability: A (10%), B (8%)
● How to estimate number of clicks you’ll actually get if model isn’t calibrated?
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Confidence measurement

● Usefulness threshold for each individual prediction
● Uncertain predictions can cause annoyance & catastrophic consequences
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Confidence measurement

● How to measure the confidence level of each prediction?
● What to do with predictions below the confidence threshold?

○ Skip
○ Ask for more information
○ Loop in humans
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Slice-based evaluation
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Different performance on different slices

● Classes
○ Might perform worse on minority classes

● Subgroups
○ Gender
○ Location
○ Time of using the app
○ etc.
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Same performance on different slices with 
different cost
● User churn prediction

○ Paying users are more critical

● Predicting adverse drug reactions
○ Patients with underlying conditions are more critical

96

⚠ Focusing on improving only overall metrics might hurt 
performance on subgroups ⚠



Slice-based evaluation: example

● Majority group: 90%
● Minority group: 10%

97

Majority 
accuracy

Minority 
accuracy

Model A 98% 80%

Model B 95% 95%

Zoom poll: Which model would you go with?



Slice-based evaluation: example

● Majority group: 90%
● Minority group: 10%

98

Majority 
accuracy

Minority 
accuracy

Overall 
accuracy

Model A 98% 80% 96.2%

Model B 95% 95% 95%

Coarse-grained evaluation can hide:
● model biases
● potential for improvement



Simpson’s paradox

● Models A and B to predict whether a customer will buy your product
● A performs better than B overall
● B performs better than A on both female & male customers
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Simpson’s paradox

100

Treatment 1 Treatment 2

Group A 93% (81/87) 87% (234/270)

Group B 73% (192/263) 69% (55/80)

Overall 78% (273/350) 83% (289/350)

Numbers from a kidney stone treatment study. (Charig et al., 1986)

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1339981/


Simpson’s paradox: Berkeley graduate admission ‘73

101
Sex Bias in Graduate Admissions: Data from Berkeley (Bickel et al., 1975)

Bias against women in the process, or is there?

https://homepage.stat.uiowa.edu/~mbognar/1030/Bickel-Berkeley.pdf


Simpson’s paradox: Berkeley graduate admission ‘73
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Sex Bias in Graduate Admissions: Data from Berkeley (Bickel et al., 1975)

⚠ Aggregation can conceal and contradict actual situation ⚠

https://homepage.stat.uiowa.edu/~mbognar/1030/Bickel-Berkeley.pdf


Slice-based evaluation

● Evaluate your model on different slices
○ E.g. when working with website traffic data, slice data among:

■ gender
■ mobile vs. desktop
■ browser
■ location

● Check for consistency over time
○ E.g. evaluate your model on data slices from each day
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Slice-based evaluation

● Improve model’s performance both overall and on critical data
● Help avoid biases
● Even when you don’t think slices matter, slicing can:

○ give you confidence on your model (to convince your boss)
○ might reveal non-ML problems
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How to identify slices?

● Heuristics
○ Might require subject matter expertise

● Error analysis
○ Patterns among misclassified samples

● Slice finder
○ Exhaustive/beam search
○ Clustering
○ Decision tree

105Slice finder: Automated data slicing for model validation (Chung et al., 2019)
Subgroup Discovery Algorithms: A Survey and Empirical Evaluation (Sumyea Helal, 2016)

https://ieeexplore.ieee.org/abstract/document/8731353
http://jcst.ict.ac.cn/EN/10.1007/s11390-016-1647-1


How to identify slices?

● Heuristics
○ Might require subject matter expertise

● Error analysis
○ Patterns among misclassified samples

● Slice finder
○ Exhaustive/beam search
○ Clustering
○ Decision tree

106Slice finder: Automated data slicing for model validation (Chung et al., 2019)
Subgroup Discovery Algorithms: A Survey and Empirical Evaluation (Sumyea Helal, 2016)

Will go into details next lecture!

https://ieeexplore.ieee.org/abstract/document/8731353
http://jcst.ict.ac.cn/EN/10.1007/s11390-016-1647-1


Machine Learning Systems Design
Next class:
Evaluation Tutorial with Goku Mohandas + Chloe He

cs329s.stanford.edu | Chip Huyen


