
Summa
HCMC - 6/4/2022

Enrico & Jin









Book authentication
1400 2020 2023



Proof of 
Solvency for 
Centralized
Exchanges 
(CEXs)

Book Authentication





Proof of Solvency

- Cryptographic proof that a CEX is solvent at a specific 
moment in time



Proof of Solvency

- Cryptographic proof that a CEX is solvent at a specific 
moment in time

Assets >= Liabilities



LIABILITIES

- Deposits of the users
- Denominated in ETH, 

BTC, USDC …
- Do not live on-chain, 

live in the CEX’s DB



LIABILITIES

- Deposits of the users
- Denominated in ETH, 

BTC, USDC …
- Do not live on-chain, 

live in the CEX’s DB

ASSETS

- Cryptographic assets 
(ETH, BTC, USDC…) 
controlled by the CEX

- Live on-chain
- Should map 1:1 the 

deposits of the users



Proof Of Solvency

- Cryptographic proof that a CEX is solvent at a specific 
moment in time

Assets >= Liabilities

Users are confident 
that they can withdraw 
at any time



Summa: ZK Proof of Solvency 



Why ZK?



ZK of what?

- Other users information such as their balances and 
usernames

- Total number of users
- Total amount of liabilities
- Total amount of assets
- The addresses of the wallets controlled by the CEX



ZK of what?

- Other users information such as their balances and 
usernames

- Total number of users
- Total amount of liabilities
- Total amount of assets (WIP)
- The addresses of the wallets controlled by the CEX (WIP)



How?



ethereum



ethereum



Merkle Sum Tree



Merkle Sum Tree
● The entries are the 

users’ data (= 
liabilities)

● Lives off-chain

● Only the root-hash 
gets published 
on-chain



ethereum



ethereum



Zk Proofs

- Individual Proof for each user



Zk Proofs

- Individual Proof for each user
- Attest that the user is included in the MST with the 

correct balance



Zk Proofs

- Individual Proof for each user
- Attest that the user is included in the MST with the 

correct balance
- Attest that hash of the MST matches the one committed



Zk Proofs

- Individual Proof for each user
- Attest that the user is included in the MST with the 

correct balance
- Attest that hash of the MST matches the one committed
- Attest that sum of liabilities is Less Than the assets of 

the exchange (as committed in step 1)



Zk Proofs

- Individual Proof for each user
- Attest that the user is included in the MST with the 

correct balance
- Attest that hash of the MST matches the one committed
- Attest that sum of liabilities is Less Than the assets of 

the exchange (as committed in step 1)
- Attest that no sum overflow happened in the merkle sum 

tree computation





ethereum



ethereum



Proof Verification

F(proof, username, balance, assets, root)



Next Steps



ethereum



Polynomial Commitment

- Replace the merkle sum tree commitment with a polynomial 
commitment

- Proving that (username, Balance) is included in that 
commitment



ethereum



idea #1 Ethereum State Proof

- Prove that Cex own a wallet using ECDSA Signature
- Prove the balance of that wallet using account proofs 

from the ethereum state Trie 
- Prove that this balance is >= liabilities



idea #2 Recursion for privacy

- Recursively verify inside a snark that:
- an Axiom proof attesting the balance of a wallet is valid
- the CEX controls that wallet (ECDSA signature)
- the balance of that wallet is >= total liabilities



idea #2 Recursion for privacy

- Recursively verify inside a snark that:
- an Axiom proof attesting the balance of a wallet is valid
- the CEX controls that wallet (ECDSA signature)
- the balance of that wallet is >= total liabilities

The recursed proof hides a public input from the original 
proof



Open issues



Open issues

- Dispute resolution



Open issues

- Dispute resolution
- Interactive protocol



Thank you!

Merkle Sum Tree - Rust Halo2 Circuits


