1 of 157

Discrete Morse Theory

Julien Tierny

2 of 157

Piecewise linear setting

  • Input PL scalar data

3 of 157

Piecewise linear setting

  • Input PL scalar data

4 of 157

Piecewise linear setting

  • Input PL scalar data

5 of 157

Piecewise linear setting

  • Input PL scalar data

  • Topological abstractions

6 of 157

Piecewise linear setting

  • Input PL scalar data

  • Topological abstractions
    • Critical points

7 of 157

Piecewise linear setting

  • Input PL scalar data

  • Topological abstractions
    • Critical points

8 of 157

Piecewise linear setting

  • Input PL scalar data

  • Topological abstractions
    • Critical points
    • Persistence diagrams
    • Persistence curve

9 of 157

Persistence simplification

  • Simplify the data
    • Retain only persistent features

  • Algorithms
    • Edelsbrunner et al. 2006, Attali et al. 2009, Tierny and Pascucci 2012, Bauer et al. 2012, Lukasczyk et al. 2020

10 of 157

Limitations of Persistence Diagrams

  • Input PL scalar data

  • Topological abstractions
    • Critical points
    • Persistence diagrams
    • Persistence curve

11 of 157

Piecewise linear setting

  • Input PL scalar data

  • Topological abstractions
    • Critical points
    • Persistence diagrams
    • Persistence curves
    • Reeb graphs

12 of 157

Piecewise linear setting

  • Input PL scalar data

  • Topological abstractions
    • Critical points
    • Persistence diagrams
    • Persistence curves
    • Reeb graphs

13 of 157

Reeb graph segmentation

14 of 157

Reeb graph segmentation

15 of 157

16 of 157

TopoAngler [Bock et al., IEEE VIS 2017]

17 of 157

18 of 157

Mapper

19 of 157

Mapper

20 of 157

Mapper

21 of 157

Mapper

22 of 157

Mapper

  • Singh et al. 2007

23 of 157

Limitations of Reeb graphs

  • Input PL scalar data

[Gyulassy 2008]

24 of 157

Limitations of Reeb graphs

25 of 157

Limitations of Reeb graphs

26 of 157

Limitations of Reeb graphs

27 of 157

Limitations of Reeb graphs

28 of 157

Morse complex

  • Motivation
    • Complete yet concise topological representation
  • Descending manifold
    • Given a critical point p, points of integral lines terminating in p

29 of 157

Morse complex

  • Motivation
    • Complete yet concise topological representation
  • Descending manifold
    • Given a critical point p, points of integral lines terminating in p
  • Morse complex
    • All descending manifolds

30 of 157

Morse complex

  • Motivation
    • Complete yet concise topological representation
  • Descending manifold
    • Given a critical point p, points of integral lines terminating in p
  • Morse complex
    • All descending manifolds

31 of 157

Morse complex

  • Motivation
    • Complete yet concise topological representation
  • Descending manifold
    • Given a critical point p, points of integral lines terminating in p
  • Morse complex
    • All descending manifolds

32 of 157

Morse-Smale complex

  • Intersection
    • Morse complex of f
    • Morse complex of -f

33 of 157

Morse-Smale complex

  • Intersection
    • Morse complex of f
    • Morse complex of -f

34 of 157

Morse-Smale complex

  • Intersection
    • Morse complex of f
    • Morse complex of -f
    • Persistence simpliciation
      • Hierarchical complexes

35 of 157

Applications

Live demo

36 of 157

Applications

37 of 157

Applications

38 of 157

Applications

39 of 157

Applications

40 of 157

Applications

41 of 157

Applications

42 of 157

Valid if

  • Ascending and descending manifolds
    • Transversal intersection

43 of 157

Valid if

  • Ascending and descending manifolds
    • Transversal intersection

44 of 157

Valid if

  • Ascending and descending manifolds
    • Transversal intersection

45 of 157

Valid if

  • Ascending and descending manifolds
    • Transversal intersection

46 of 157

Properties

  • Generic CW complex
    • 1D cells: index d to d+1

47 of 157

Properties

  • Generic CW complex
    • 1D cells: index d to d+1

  • 2-manifolds
    • 2D cells: quadrangles
    • Simple saddles: valence 4
    • Extrema: arbitrary valence

48 of 157

49 of 157

50 of 157

Properties

  • Generic CW complex
    • 1D cells: index d to d+1

  • 2-manifolds
    • 2D cells: quadrangles
    • Simple saddles: valence 4
    • Extrema: arbitrary valence

  • 3-manifolds
    • 3D cells: arbitrary number of faces
      • Polygonal faces: quadrangles

51 of 157

Algorithms

  • PL setting
    • 2-manifolds
      • Edelsbrunner et al. 2000
      • Bremer et al. 2003

52 of 157

Algorithms

  • PL setting
    • 2-manifolds
      • Edelsbrunner et al. 2000
      • Bremer et al. 2003

    • 3-manifolds
      • Edelsbrunner et al. 2003
      • Gyulassy et al. 2007

53 of 157

Algorithms

  • PL setting
    • 2-manifolds
      • Edelsbrunner et al. 2000
      • Bremer et al. 2003

    • 3-manifolds
      • Edelsbrunner et al. 2003
      • Gyulassy et al. 2007

    • Challenges
      • Saddle unfolding
      • Transversal intersection
      • No known robust implementation

54 of 157

Algorithms

  • PL setting
    • 2-manifolds
      • Edelsbrunner et al. 2000
      • Bremer et al. 2003

    • 3-manifolds
      • Edelsbrunner et al. 2003
      • Gyulassy et al. 2007

    • Challenges
      • Saddle unfolding
      • Transversal intersection
      • No known robust implementation
      • Until Discrete Morse Theory

55 of 157

Discrete Morse Theory

  • Robin Forman
    • “A user’s guide to DMT” 2002

  • Discrete Morse Function
    • Maps each simplex to

56 of 157

Discrete Morse Theory

  • Robin Forman
    • “A user’s guide to DMT” 2002

  • Discrete Morse Function
    • Maps each simplex to
    • Such that

57 of 157

Discrete Morse Theory

  • Robin Forman
    • “A user’s guide to DMT” 2002

  • Discrete Morse Function
    • Maps each simplex to
    • Such that

    • Critical simplices

58 of 157

Discrete Gradient Field

  • Discrete vector
    • Pair

59 of 157

Discrete Gradient Field

  • Discrete vector
    • Pair

  • Discrete vector field
    • Collection V of pairs
    • Each simplex in at most 1 pair

60 of 157

Discrete Gradient Field

  • Discrete vector
    • Pair

  • Discrete vector field
    • Collection V of pairs
    • Each simplex in at most 1 pair

  • Discrete integral line (v-path)
    • Sequence of vectors

61 of 157

Discrete Gradient Field

  • Discrete vector
    • Pair

  • Discrete vector field
    • Collection V of pairs
    • Each simplex in at most 1 pair

  • Discrete integral line (v-path)
    • Sequence of vectors

62 of 157

Discrete Gradient Field

  • Discrete vector
    • Pair

  • Discrete vector field
    • Collection V of pairs
    • Each simplex in at most 1 pair

  • Discrete integral line (v-path)
    • Sequence of vectors

  • Discrete gradient field
    • All v-paths are loop free

63 of 157

TODO: backward vpaths (dual)

  • TODO
    • TODO

64 of 157

From a filtration to a discrete gradient field

  • Steepest descent assignment
    • Shrivashankar et al. 2012

65 of 157

From a filtration to a discrete gradient field

  • Steepest descent assignment
    • Shrivashankar et al. 2012
    • For each dimension i

66 of 157

From a filtration to a discrete gradient field

  • Steepest descent assignment
    • Shrivashankar et al. 2012
    • For each dimension i
      • For each simplex

67 of 157

From a filtration to a discrete gradient field

  • Steepest descent assignment
    • Shrivashankar et al. 2012
    • For each dimension i
      • For each simplex
        • Co-facets maximized by

68 of 157

From a filtration to a discrete gradient field

  • Steepest descent assignment
    • Shrivashankar et al. 2012
    • For each dimension i
      • For each simplex
        • Co-facets maximized by

        • Select the minimum co-facet

69 of 157

From a filtration to a discrete gradient field

  • Steepest descent assignment
    • Shrivashankar et al. 2012
    • For each dimension i
      • For each simplex
        • Co-facets maximized by

        • Select the minimum co-facet

    • Trivially parallelizable

70 of 157

From a filtration to a discrete gradient field

  • Steepest descent assignment
    • Shrivashankar et al. 2012
    • For each dimension i
      • For each simplex
        • Co-facets maximized by

        • Select the minimum co-facet

    • Trivially parallelizable

  • Comparing simplices
    • Filtration order (e.g. lexicographic filtration)

71 of 157

From a filtration to a discrete gradient field

  • Steepest descent assignment
    • Shrivashankar et al. 2012
    • For each dimension i
      • For each simplex
        • Co-facets maximized by

        • Select the minimum co-facet

    • Trivially parallelizable

  • Comparing simplices
    • Filtration order (e.g. lexicographic filtration)
    • Discrete vectors: “apparent” persistent pairs (Ripser, DMS, etc.)

72 of 157

73 of 157

74 of 157

75 of 157

76 of 157

Discrete gradient field and persistence

  • Critical simplices -> simplices involved in non-trivial pairs
    • Play filtration of running example and track persistence pairs

77 of 157

Properties

  • Unpaired simplices
    • Dead-ends for v-paths

78 of 157

Properties

  • Unpaired simplices
    • Dead-ends for v-paths
      • Notion of critical simplex

79 of 157

Properties

  • Unpaired simplices
    • Dead-ends for v-paths
      • Notion of critical simplex
      • Dimension: index \0/

80 of 157

Properties

  • Unpaired simplices
    • Dead-ends for v-paths
      • Notion of critical simplex
      • Dimension: index \0/
    • Manifold domain
      • No degenerate critical point! \0/

81 of 157

Properties

  • Unpaired simplices
    • Dead-ends for v-paths
      • Notion of critical simplex
      • Dimension: index \0/
    • Manifold domain
      • No degenerate critical point! \0/

  • Transversal intersection
    • Dimensionality of V-paths
      • Depends on critical index
      • 2D: ascending and descending manifolds on different dimensions

82 of 157

Properties

  • Unpaired simplices
    • Dead-ends for v-paths
      • Notion of critical simplex
      • Dimension: index \0/
    • Manifold domain
      • No degenerate critical point! \0/

  • Transversal intersection
    • Dimensionality of V-paths
      • Depends on critical index
      • 2D: ascending and descending manifolds on different dimensions
    • Descending manifolds: primal complex
    • Ascending manifolds: dual complex

83 of 157

Discrete Morse-Smale complex

  • Algorithm
    • Collect the ascending and descending manifolds*

84 of 157

Discrete Morse-Smale complex

  • Algorithm
    • Collect the ascending and descending manifolds of each critical cell

85 of 157

Discrete Morse-Smale complex

  • Algorithm
    • Collect the ascending and descending manifolds of each critical cell

    • 1-dimensional separatrices
      • Descending manifolds of 1-saddles (primal)
      • Ascending manifolds of (d-1)-saddles (dual)

86 of 157

Discrete Morse-Smale complex

  • Algorithm
    • Collect the ascending and descending manifolds of each critical cell

    • 1-dimensional separatrices
      • Descending manifolds of 1-saddles (primal)
      • Ascending manifolds of (d-1)-saddles (dual)

    • 2-dimensional separatrices
      • Descending manifolds of (d-1)-saddles (primal)
      • Ascending manifolds of 1-saddles (dual)

87 of 157

Discrete Morse-Smale complex

  • Algorithm
    • Collect the ascending and descending manifolds of each critical cell

    • 1-dimensional separatrices
      • Descending manifolds of 1-saddles (primal)
      • Ascending manifolds of (d-1)-saddles (dual)

    • 2-dimensional separatrices
      • Descending manifolds of (d-1)-saddles (primal)
      • Ascending manifolds of 1-saddles (dual)

    • Saddle connectors (3D)
      • V-path connecting a 1-saddle to a 2-saddle (intersection)

88 of 157

89 of 157

90 of 157

91 of 157

92 of 157

93 of 157

94 of 157

95 of 157

96 of 157

97 of 157

98 of 157

99 of 157

100 of 157

101 of 157

102 of 157

103 of 157

104 of 157

105 of 157

106 of 157

107 of 157

108 of 157

109 of 157

110 of 157

111 of 157

PL matching property

112 of 157

113 of 157

114 of 157

115 of 157

116 of 157

117 of 157

118 of 157

119 of 157

Simplification

  • Pre-simplification
    • Scalar field simplification

120 of 157

Simplification

  • Pre-simplification
    • Scalar field simplification

  • Post-simplification
    • Simplifying pairs of critical simplices
      • Existence of a unique v-path
        • Gradient reversal (domino flip)
        • MS-complex update

121 of 157

Simplification

  • Pre-simplification
    • Scalar field simplification

  • Post-simplification
    • Simplifying pairs of critical simplices
      • Existence of a unique v-path
        • Gradient reversal (domino flip)
        • MS-complex update

122 of 157

Simplification

  • Pre-simplification
    • Scalar field simplification

  • Post-simplification
    • Simplifying pairs of critical simplices
      • Existence of a unique v-path
        • Gradient reversal (domino flip)
        • MS-complex update

123 of 157

Simplification

  • Pre-simplification
    • Scalar field simplification

  • Post-simplification
    • Simplifying pairs of critical simplices
      • Existence of a unique v-path
        • Gradient reversal (domino flip)
        • MS-complex update

124 of 157

Simplification

  • Pre-simplification
    • Scalar field simplification

  • Post-simplification
    • Simplifying pairs of critical simplices
      • Existence of a unique v-path
        • Gradient reversal (domino flip)
        • MS-complex update

125 of 157

Simplification

  • Pre-simplification
    • Scalar field simplification

  • Post-simplification
    • Simplifying pairs of critical simplices
      • Existence of a unique v-path
        • Gradient reversal (domino flip)
        • MS-complex update

126 of 157

Simplification

  • Pre-simplification
    • Scalar field simplification

  • Post-simplification
    • Simplifying pairs of critical simplices
      • Existence of a unique v-path
        • Gradient reversal (domino flip)
        • MS-complex update

127 of 157

Simplification

  • Pre-simplification
    • Scalar field simplification

  • Post-simplification
    • Simplifying pairs of critical simplices
      • Existence of a unique v-path
        • Gradient reversal (domino flip)
        • MS-complex update

128 of 157

Simplification

  • Pre-simplification
    • Scalar field simplification

  • Post-simplification
    • Simplifying pairs of critical simplices
      • Existence of a unique v-path
        • Gradient reversal (domino flip)
        • MS-complex update

129 of 157

Simplification

  • Pre-simplification
    • Scalar field simplification

  • Post-simplification
    • Simplifying pairs of critical simplices
      • Existence of a unique v-path
        • Gradient reversal (domino flip)
        • MS-complex update

130 of 157

Simplification

  • Pre-simplification
    • Scalar field simplification

  • Post-simplification
    • Simplifying pairs of critical simplices
      • Existence of a unique v-path
        • Gradient reversal (domino flip)
        • MS-complex update

131 of 157

Simplification

  • Pre-simplification
    • Scalar field simplification

  • Post-simplification
    • Simplifying pairs of critical simplices
      • Existence of a unique v-path
        • Gradient reversal (domino flip)
        • MS-complex update

132 of 157

Simplification

  • Pre-simplification
    • Scalar field simplification

  • Post-simplification
    • Simplifying pairs of critical simplices
      • Existence of a unique v-path
        • Gradient reversal (domino flip)
        • MS-complex update

133 of 157

Simplification

  • Pre-simplification
    • Scalar field simplification

  • Post-simplification
    • Simplifying pairs of critical simplices
      • Existence of a unique v-path
        • Gradient reversal (domino flip)
        • MS-complex update

134 of 157

Simplification

  • Pre-simplification
    • Scalar field simplification

  • Post-simplification
    • Simplifying pairs of critical simplices
      • Existence of a unique v-path
        • Gradient reversal (domino flip)
        • MS-complex update

135 of 157

Simplification

  • Pre-simplification
    • Scalar field simplification

  • Post-simplification
    • Simplifying pairs of critical simplices
      • Existence of a unique v-path
        • Gradient reversal (domino flip)
        • MS-complex update

136 of 157

Simplification

  • Pre-simplification
    • Scalar field simplification

  • Post-simplification
    • Simplifying pairs of critical simplices
      • Existence of a unique v-path
        • Gradient reversal (domino flip)
        • MS-complex update

137 of 157

Simplification

  • Pre-simplification
    • Scalar field simplification

  • Post-simplification
    • Simplifying pairs of critical simplices
      • Existence of a unique v-path
        • Gradient reversal (domino flip)
        • MS-complex update

138 of 157

Simplification

  • Pre-simplification
    • Scalar field simplification

  • Post-simplification
    • Simplifying pairs of critical simplices
      • Existence of a unique v-path
        • Gradient reversal (domino flip)
        • MS-complex update

139 of 157

a)

b)

c)

140 of 157

Simplification

  • Pre-simplification
    • Scalar field simplification

  • Post-simplification
    • Simplifying pairs of critical simplices
      • Existence of a unique v-path
        • Gradient reversal (domino flip)
        • MS-complex update

141 of 157

Simplification

  • Pre-simplification
    • Scalar field simplification

  • Post-simplification
    • Simplifying pairs of critical simplices
      • Existence of a unique v-path
        • Gradient reversal (domino flip)
        • MS-complex update

142 of 157

Simplification

  • Pre-simplification
    • Scalar field simplification

  • Post-simplification
    • Simplifying pairs of critical simplices
      • Existence of a unique v-path
        • Gradient reversal (domino flip)
        • MS-complex update

143 of 157

Simplification

  • Pre-simplification
    • Scalar field simplification

  • Post-simplification
    • Simplifying pairs of critical simplices
      • Existence of a unique v-path
        • Gradient reversal (domino flip)
        • MS-complex update

144 of 157

Simplification

  • Pre-simplification
    • Scalar field simplification

  • Post-simplification
    • Simplifying pairs of critical simplices
      • Existence of a unique v-path
        • Gradient reversal (domino flip)
        • MS-complex update

145 of 157

Applications

  • Filament extraction
    • Molecular interactions
    • Paths in porous media
    • Cosmic web
    • Salient curves in point clouds
    • etc.

146 of 157

Applications

  • Filament extraction
    • Molecular interactions
    • Paths in porous media
    • Cosmic web
    • Salient curves in point clouds
    • etc.

147 of 157

Applications

  • Filament extraction
    • Molecular interactions
    • Paths in porous media
    • Cosmic web
    • Salient curves in point clouds
    • etc.

148 of 157

Applications

  • Filament extraction
    • Molecular interactions
    • Paths in porous media
    • Cosmic web
    • Salient curves in point clouds
    • etc.

149 of 157

Applications

  • Filament extraction
    • Molecular interactions
    • Paths in porous media
    • Cosmic web
    • Salient curves in point clouds
    • etc.

  • Cellular segmentation
    • Persistent Homology computation
    • Manifold reconstruction
    • Persistence driven clustering

  • Video tutorials

  • Documentation

150 of 157

151 of 157

152 of 157

Take-home message

  • Morse-Smale complex
    • Filament structures
    • Cell-like segmentation
    • Data clustering
    • TDA acceleration
    • Complete & concise topological representation

  • Discrete Morse Theory
    • Simple and elegant
    • Enables robustness in algorithms
    • Compliance with the PL setting
    • Challenging boundary handling :(

  • Video tutorials

  • Documentation

153 of 157

Overall conclusion

  • Topological Data Analysis
    • Feature extraction
      • Structural information
        • Visualization & analysis
      • Invariance to affine transformations
    • Conciseness & stability
      • Small data signatures
    • Code is available (TTK, Gudhi)

  • Perspectives
    • Statistical analysis
      • Space of topological signatures
      • https://erc-tori.github.io/

154 of 157

Saddle unfolding

155 of 157

Persistence diagrams

156 of 157

Reeb graphs

157 of 157

Morse-Smale complexes