
1

ePBS

potuz@prysmaticlabs.com

EPF - AMA





Current Ethereum Slot
● 2 seconds for payload validation.
● 4 seconds for attestation propagation (aggregation).
● 4 seconds for aggregation propagation (compute head).

● Can we make validation longer?
No: timing games minimize validation inherently, proposers delay broadcast 
as much as possible. There are constructions with changes to the EL 
consensus

● Bad utilization of CPU time
CPU is used only in the 2 seconds of validation and in the last milliseconds for 
head computing. 









ePBS Slot

● 9'' payload validation / 1''-2'' CL validation (vs. 2'' for both). Higher gas limit. 

● 6'' payload validation for proposer (vs 10'')

● 6'' building time (vs 10'')

● CPU usage is distributed throughout the slot. 

● Highly connected builders can broadcast early. 

● Builders can broadcast blobs as soon as the block is seen. 



Unconditional Payment

● Builders are staked.
● Bids are signed by the builder.
● Bids are included in the CL block. 
● Payment is fulfilled in the CL when 

processing the block (in the first 3 
seconds of the slot). 

If the block is canonical, the builder is 
deducted the bid immediately. 



Staked Builders

● Collateral needs to be available before the 
block either way as we only know how to 
process payment in the EL top of block 
(unknown ZK witchcraft is required 
otherwise).

● There's capital flow from the CL to the EL, 
is the cost of the refunding transaction 
critical?

● The 99.99th percentile block has ~30ETH 
MEV reward.

● Will builders risk not getting these blocks 
when they fall in vanilla proposers?

Credit: BlockScholes



Builder Safety Concerns







Builder's safety

● Builders can broadcast a payload or a "withhold message". 

● Builders count attestations until the 6" mark to make a decision. Do clients 

need to implement this? (Beacon API) 

● PTC votes at 9", if there's consensus the builder receives a "boost" of 40%.

● Boost works both ways, if the payload was broadcast, honest validators will 

give 40% more weight to the current block as head. If a withhold message 

was present, honest validators will give 40% more weight to reorg the 

current block. 



Unbundling safety

Proposers of N-1 and N collude against builder of N-1. Proposers are assumed to 
control network topology. 

● Unbundling for current slot is impossible 
● Reorging a payload requires 40% of stake

○ Builder loses the bid
● Reorging a block requires 20% of stake

○ Builder doesn't lose collateral
○ Builder's transactions can be slot-bound

● All attacks require preparation at N-1.



Withholding safety

Proposers of N-1 and N collude against builder of N-1. Proposers are assumed to 
control network topology. 

● Grieving the builder requires 20%



Time constraints

● PTC votes on payload presence at 9". Only presence, not validity.
● As soon as 50% of the committee is seen, builder's can broadcast safely their 

payloads. In the normal case this should give up to 5" to propagate the 

payload.

● Head is only known at 6":
○ Builder of N+1 has only 6" to build the next block.

○ Builder of N has extra 4"~6" to build it. Can this be exploited?

● Blobs can be sent 4" before the payload is broadcast. 

● How does the searcher market change?



The Auction



Builders as vertically integrated relays

Builders can open HTTP endpoints to serve bids.

Builders lists can be kept open on-chain. 

Only serve a bid when requested (if deemed appropriate). 

Serving multiple bids leads to builder complexity. 

P2P propagated bids will be heavily rated and are unlikely to win the auction (they 
set the floor price). 

Bid cancellation is possible within the builder's endpoint, but not once it's served 
and signed.



Sealed nature

● We can seal bids in-protocol: proposer signs the bid request on the HTTP 
endpoint and encrypts it to the builder.

● The auction seems to be sealed regardless: builders bidding on a 
service-providing relay, cannot trust others aren't bidding on their own 
endpoints or even off-protocol. 

● Are there proposer strategies to request and publicize builder's bids?

● Should the protocol enforce the minimum bid to be specified by P2P? (is there 
any censorship resistance gained from this?)



Relays post ePBS

In https://ethresear.ch/t/relays-in-a-post-epbs-world/16278 it is highlighted that 
relays offer an advantage over ePBS for:

● Cancellation support. 
● Payment flexibility

○ Allows for bottom of block payment verification.
○ Requires off-protocol software (or the relay is a defacto-builder).
○ Requires either staked builders or loosing vanilla-assigned blocks. 

● Will proposers and builders use this?
● Do we even care?

https://ethresear.ch/t/relays-in-a-post-epbs-world/16278


Relays post ePBS

● Either the relay needs to be staked and sign the payloads or, as today, the 
proposer signs as if it were self-building

● Both cases require JIT full validation of the payload (vs the 8"--11" 
in-protocol).

● Both cases require a few extra networking roundtrips: Builder <-> Relay, 
Proposer <-> Relay, all before broadcasting the CL block in time to be 
attested. 



Future/Alternative designs/addons



Slot auctions

● Slot auctions are a simple change from this version of ePBS: not commit to a 
payload hash. 

● Builders get 12" instead of 6" to build a block (no advantages to ticket holder)

● Builders can run MEV-Boost off-protocol and resell. 

● Do we have to deal with equivocations?

● Do we require a new voting round?

● Do we have to deal with slashing conditions?
○ There are no FFG problems as the payload commits to the same target as the CL block.

○ There are no LMD problems as the next proposer resolves the split view. 



Inclusion Lists

● The design solves some of the fundamental problems of forced inclusion lists 
(EIP 7547) because of (block, slot) voting. 

● It requires an EL fork. 

● Inclusion lists are not mandatory if self-building is possible. 



Execution tickets

● Execution tickets can be 
implemented as an evolution of 
slot auctions. 

● The protocol carries the auction 
and not the proposer. 

● The same forkchoice concerns as 
in slot auctions are now valid 
since the payload is not bound to 
a given consensus block. 

Credit: Barnabé Monot



Some implementation complexities



CL-EL locking: Withdrawals

● Withdrawals are determined by the beacon state but fulfilled in the EL. 

● Proposer of N deducts the withdrawals on the CL, regardless of payload. 

● The payload of N is not valid unless it fulfills these withdrawals.

● No payload is ever valid until these withdrawals are fulfilled, hence future CL 
blocks cannot process withdrawals until a valid payload has appeared. 

● EL triggered withdrawals do not add much more complications. 



Forkchoice Complexity



Forkchoice Complexity



Forkchoice Complexity



Thanks!


