Lecture 10a: Confidence intervals (CIs)

Question: Write pseudocode for the bootstrap method for estimating standard errors.

Worksheets + scratch paper + snacks are in front!

Josh Grossman

shorturl.at/rt5m6

HW2 now due Monday at midnight.

[I want to make sure we have sufficiently covered CIs]

HW2 now due Monday at midnight.

[I want to make sure we have sufficiently covered CIs]

Lab 4 (Parts A + B) w/ Lecture 9 worksheet due next Friday at midnight.

HW2 now due Monday at midnight.

[I want to make sure we have sufficiently covered CIs]

Lab 4 (Parts A + B) w/ Lecture 9 worksheet due next Friday at midnight.

Midterm 1 is two weeks from today.

[Practice problems posted]

Midterm logistics post coming soon.

0. Start with a single random sample of size n. Calculate a point estimate using this sample.

- 0. Start with a single random sample of size n. Calculate a point estimate using this sample.
- 1. Resample with replacement from the original sample to produce B synthetic samples, each of size n.

- 0. Start with a single random sample of size n. Calculate a point estimate using this sample.
- 1. Resample with replacement from the original sample to produce B synthetic samples, each of size n.
- 2. Calculate a synthetic point estimate for each of the B synthetic samples.

- 0. Start with a single random sample of size n. Calculate a point estimate using this sample.
- 1. Resample with replacement from the original sample to produce B synthetic samples, each of size n.
- 2. Calculate a synthetic point estimate for each of the B synthetic samples.
- 3. The SD of the B synthetic point estimates is the bootstrap-estimated SE.

Presidential polling from April 2024 From Reuters/Ipsos

41% of registered voters in the April 5 – April 9 poll said they would vote for Biden, compared with 37% who picked Trump.

Presidential polling from April 2024 From Reuters/Ipsos

41% of registered voters in the April 5 – April 9 poll said they would vote for Biden, compared with 37% who picked Trump.

Responses were from 833 registered voters surveyed online.

41% of registered voters in the April 5 – April 9 poll said they would vote for Biden, compared with 37% who picked Trump.

Responses were from 833 registered voters surveyed online.

The poll had a margin of error of 4% with 95% confidence.

41% of registered voters in the April 5 – April 9 poll said they would vote for Biden, compared with 37% who picked Trump.

Responses were from 833 registered voters surveyed online.

The poll had a margin of error of 4% with 95% confidence.

What's your interpretation of the 4% and 95%? How might a non-technical consumer of news interpret 4% and 95%?

[Discuss with neighbors]

A 95% confidence interval (CI) for a parameter θ is an interval $C_n = (a,b)$ such that:

$$\Pr(\theta \in C_n) \ge 0.95$$

A 95% confidence interval (CI) for a parameter θ is an interval $C_n = (a,b)$ such that:

$$\Pr(\theta \in C_n) \ge 0.95$$

 θ is fixed and C_n is random

"We're not shooting soccer balls at stationary goals. We're trying to place goal posts around stationary soccer balls."

 θ

75% CI for sample 1

75% CI for sample 2

75% CI for sample 3

75% CI for sample 4

Two interpretations

1. If you repeat the **same** experiment many times, the 95% CIs will "capture" the true parameter at least 95% of the time.

But, we only get to observe one universe!

Two interpretations

1. If you repeat the **same** experiment many times, the 95% CIs will "capture" the true parameter at least 95% of the time.

But, we only get to observe one universe!

2. If you construct many 95% CIs for various, **unrelated** parameters, at least 95% of CIs will contain their parameter.

Examples

49% ± 3% think U.S. should lift Cuba embargo.

38% ± 3% think U.S. should build more nuclear power plants.

16% ± 4% think St. Louis Cardinals will win the World Series.

Examples

Point estimates

[Best guesses]

A 95% confidence interval (CI) for a parameter θ is an interval $C_n = (a,b)$ such that:

$$\Pr(\theta \in C_n) \ge 0.95$$

A 1- α confidence interval (CI) for a parameter θ is an interval $C_n = (a,b)$ such that:

$$\Pr(\theta \in C_n) \ge 1 - \alpha$$

Normal approximations

Suppose, by the CLT,

$$\hat{\theta}_n \approx N(\theta, \text{se}^2)$$

Flip 30 coins (p=0.5) 10,000 times, and plot the 10,000 resulting means.

Across parallel universes of random samples, what estimates might we have observed?

This is the approximate **sampling distribution** of our \hat{p} estimator when p=0.5 and n=30.

The true sampling distribution has infinite replications \rightarrow We treat 10,000 as ∞ !

Normal approximations

Suppose, by the CLT,

$$\hat{\theta}_n \approx N(\theta, \text{se}^2)$$

Let

$$C_n = (\hat{\theta}_n - z_{\alpha/2} se, \ \hat{\theta}_n + z_{\alpha/2} se)$$

Normal approximations

Suppose, by the CLT,

$$\hat{\theta}_n \approx N(\theta, \text{se}^2)$$

If possible, estimate the analytic standard error, OTHERWISE. bootstrap the standard error

Let

$$C_n = (\hat{\theta}_n - z_{\alpha/2} \operatorname{se}, \ \hat{\theta}_n + z_{\alpha/2} \operatorname{se})$$

Normal approximations

Suppose, by the CLT,

$$\hat{\theta}_n \approx N(\theta, \text{se}^2)$$

Let

$$C_n = (\hat{\theta}_n - z_{\alpha/2}) e, \ \hat{\theta}_n + z_{\alpha/2} e)$$

Table 1 Constructing intervals

[See skipped Lecture 10b slides for short proof! Not required for 131A.]

Suppose, by the CLT,

$$\hat{\theta}_n \approx N(\theta, \text{se}^2)$$

Let

$$C_n = (\hat{\theta}_n - z_{\alpha/2}) \operatorname{se}, \ \hat{\theta}_n + z_{\alpha/2} \operatorname{se})$$

Then

$$\Pr(\theta \in C_n) \approx 1 - \alpha$$

General Q&A

Nobody has responded yet.

Hang tight! Responses are coming in.

The normal distribution

The standard normal distribution

Mean=0, SD=1, also known as the z-distribution

Z is the number of SDs from the mean

Also known as z-score

An arbitrary normal distribution

With mean of μ and SD of σ

68-95-99.7 rule

68-95-99.7 rule

68-95-99.7 rule

Left-tailed area

What is Pr(Z < 1)? [Worksheet]

Left-tailed area

What is Pr(Z < 1)? [Worksheet]

Left-tailed area

The cumulative distribution function (CDF)

For the normal distribution

The cumulative distribution function (CDF)

For the normal distribution

The cumulative distribution function (CDF)

For the normal distribution

$$\Phi(x) = \int f(x)dx$$

Q? pollev.com/jdgg

45

2

0.0

-3

-2

T Constructing intervals

Normal approximations

Let Φ be the CDF of a standard normal N(0,1)

What is $\Phi^{-1}(0.025)$? [Worksheet]

Constructing intervals

Normal approximations

Let Φ be the CDF of a standard normal N(0,1)

What is $\Phi^{-1}(0.025)$?

"What x-axis value corresponds to a left-tailed area of 0.025?"

Constructing intervals

Normal approximations

Let Φ be the CDF of a standard normal N(0,1)

$$\Phi^{-1}(0.025) = -2$$

$$\Phi^{-1}(0.975) = +2$$
[Technically, -1.96 and 1.96]

