Year 11 Engineering design: Curriculum Intent

During year 11 students will have the opportunity to gain underpinning knowledge and understanding relevant to the qualification and sector. The NEA units draw on and strengthen this learning with students applying their learning in a practical, skills-based way

Year 11 Essential Knowledge Summary		
R038: Principles of engineering design	R039: Communicating designs	R040: Design, evaluation and modelling
Composite Knowledge:	Composite Knowledge:	Composite Knowledge:
This is assessed by an exam. In this unit	This is assessed by a set assignment. In this	This is assessed by a set assignment. In this
students will learn about the design process,	unit students will learn how to use sketching	unit you will learn how to create and test
and all of the stages that are involved.	and engineering drawings to communicate	models of your design.
Topics include:	ideas.	Topics include:
o Understanding how to execute a range of	Topics include:	o Product evaluation
design processes independently.	o Manual production of freehand sketches	o Modelling design ideas
o Designing requirements are established	using a range of CAD software.	Students should use ACCESS FM to analyse
with the use of ACCESS FM and a	o Manual production of engineering drawings.	the specified product and compare products
specification is developed that is linked	o Use of computer aided design (CAD)	using an appropriate customer driven
through design and evaluation.	Design using regular solids: cube,	engineering matrix.
o Communicating design outcomes with a	rectangular block, hollow object and a	•Both primary and secondary research should
range of mediums with confidence and	cylinder	be undertaken to identify the strengths and
understanding of their need in a range of scenarios.	•Compound shapes To include:	weaknesses of existing products.
o Evaluating design ideas to develop an	Exploded view	
understanding of how to investigate potential	Sectional view	Component Knowledge:
modifications, improvements and	Produce a 3D CAD model of a design	Foundational Knowledge:
developments as well as critique a range of	proposal to include compound 3D shapes	Declarative Knowledge:
feedback from their target market group.	2 Produce 3D CAD assemblies of	Understand how to carry out product
	components	disassembly carefully, under close
Component Knowledge:		supervision, and following safety guidelines,
Foundational Knowledge:	Component Knowledge:	in order to analyse how it is made and
Declarative Knowledge:	Foundational Knowledge:	assembled.
Be able to identify or recognise a given item,	Declarative Knowledge:	Understand how to use 3D CAD software in
for example on a diagram	Understand how to produces a wide range of	order to produce a virtual 3D model from the
Use direct recall to answer a	creative and innovative freehand design	product specification provided.
question, for example the definition of	proposals. Fully considering the design	Students should understand how to plan the
a term.	specification. Uses a comprehensive range of	production of a prototype, and will need to
The context in which each design strategy might be applied	techniques. Justification demonstrating a detailed	identify and plan the different stages required to manufacture the it.
 strategy might be applied The relative advantages and 	understanding of needs and wants of the	
disadvantages of each strategy	client/user	Procedural Knowledge:
 Relative advantages and 		Extensive evidence of analysis of design
disadvantages of primary and		proposals that are fully annotated.
secondary research for product	Procedural Knowledge:	Produces comprehensive freehand sketches
requirements	Extensive evidence of analysis of design	of design proposal.
 How the information obtained from 	proposals that are fully annotated.	Detailed explanation of the key features of a
each method contributes to the	Produces comprehensive freehand sketches	design proposal that is fully annotated.
design process	of design proposal.	Fully considers primary and secondary
 Generation of design ideas may refer 	Detailed explanation of the key features of a	knowledge.
to the creation of the initial design or to the modification/ improvement of	design proposal that is fully annotated. Fully considers the design specification.	Students understands how to apply their
the existing design	Ideas are justified and linked through the	knowledge and can justify points and provide feedback for improvements and
	project against the specification.	modifications.
Procedural Knowledge:	Students understands how to apply their	
The reasons for the use of modelling to test	knowledge and can justify points and provide	Upper Hierarchical Knowledge:
proportions to test scale to test function	feedback for improvements and	Form their own opinions and articulate this
Virtual modelling of the design idea	modifications.	within their feedback and justifications.
Physical modelling of the design idea		Name and function of components and link to
□Manufacture or modification of the prototype	Upper Hierarchical Knowledge:	their use in the product and provide
comparison of the model or prototype against	Form their own opinions and articulate this	improvements, modifications and
the requirements of the design brief and	within their feedback and justifications.	developments independently.
specification	Name and function of components and link to	Work independently and transfer their skills to
 The difference between needs and wants 	their use in the product and provide	others.
wantsThe difference between quantitative	improvements, modifications and developments independently.	Be able to evaluate their manufactured prototype against the product specification,
 The unificative between quantitative data 	Work independently and transfer their skills to	

Upper Hierarchical Knowledge:Explain and link how their outcomes areCan create their own opinion on their ownsuitable or not to their target market group

others.

designs and provide robust and clear feedback linking to ACCESS FM Able to work independently in the workshop and share their knowledge with others verbally.

data and qualitative data

Can improve or make suggestions of how the product can be modified.

Be able to solve issues and evaluate their own idea with modifications or improvements •Students will need to be able to describe the influences on engineering product design and provide robust and detailed evaluation strategies to show this.

Work independently and transfer their skills to

and suggest a range of potential design

improvements.