
Software Packaging and 
Deployment in HEP

Ben Morgan and Graeme Stewart 
(for the HEP Software Foundation Packaging Group)

2018-07-11



What are “Packaging” and “Deployment”?

● A highly context/person dependent term! Here:
○ The problem of installing and deploying a software stack of N interdependent packages
○ Not the build of a single package - handled by package’s local build (CMake/Autotools/…)

● Solution is a process and tool(s) that, to install package “foo”:
○ Installs any packages that foo requires for build/run time

■ Either: Prepares foo’s source code, build environment, then builds/installs it
■ Or: Installs pre-existing “binary package” of foo 

○ Prepares a runtime environment for the use of foo
○ May bundle foo install into “binary package” for clients to install without build-from-source

● Deployment: push/pull of this foo install/binary package, and dependencies, 
to another host (via CVMFS, tarball, Container, ...)

2



HEP Software Foundation: Packaging Working Group
● Packaging and deploying a software stack is a problem faced right across the HEP 

and wider scientific community
○ Every experiment and software group has to put effort into doing this
○ Naively it seems an easy problem, but...
○ Quickly gets complicated…
○ Seemingly obvious solutions don’t meet requirements...

● Motivated formation of WG in 2015 as a forum for working together to improve:
○ Knowledge sharing on tools and workflows in and outside HEP
○ How to take most advantage of technologies like CVMFS/Containers
○ Support/Good Practices for developers building on, users running, a deployed software stack

● http://hepsoftwarefoundation.org/activities/packaging.html 
3

http://hepsoftwarefoundation.org/activities/packaging.html


Knowledge Sharing on Packaging Tools

● Input from experiments large and 
small capturing an evolving picture 
of tools in use

● Initial report: HSF-TN-2016-03
● Inputs have helped to enumerate 

Requirements/Use Cases of 
packaging in HEP

● We’ll walk through some of these 
to highlight commonalities, 
differences and contradictions!

4

FOSS

Science Communities

HEP

aliBuild, LCGCMake

Spack

Nix, Portage

https://github.com/HSF/documents/blob/master/HSF-TN/2016-03/HSF-TN-2016-03.pdf
https://docs.google.com/document/d/1h-r3XPIXXxmr5tThIh6gu6VcXXRhBXtUuOv14ju3oTI/edit?usp=sharing
https://docs.google.com/document/d/1h-r3XPIXXxmr5tThIh6gu6VcXXRhBXtUuOv14ju3oTI/edit?usp=sharing
https://alisw.github.io/alibuild/
https://gitlab.cern.ch/sft/lcgcmake
https://spack.io
https://nixos.org/nix/manual/
https://wiki.gentoo.org/wiki/Portage


The Core Requirements Driving Complexity 

● Must be able to install and deploy N Releases of a stack concurrently
○ “Release” defined by a set of packages, plus their versions
○ If a new Release doesn’t change versions of some packages, should reuse existing installs
○ A common requirement across the scientific community

● Must be able to install and deploy Release N against M arch-OS-toolchain 
“flavours”:
○ E.g. “Stack v1” built against x86_64-centos7-gcc7, …, x86_64-macos1013-clang9

● This NxM space seems sparsely populated, but there are extra dimensions…

○ ISA extensions in arch, e.g. “x86_64+avx512”, to support heterogeneous resources

○ Toolchain ABIs, e.g. C++ Standard, Python 2 vs 3, glibc, Optimized vs Debug

○ Package Variants+Dependencies, e.g. “foo with-X”, “bar requires (foo with-X)”
5



 Reproducibility Requirements

● Builds/installs must be deterministic and reproducible
○ Want data+software preservation and reproducible research!

● Builds/installs should be able to reuse base OS packages (rpms, debs)
○ Minimize wheel reinvention, share effort

● But… changes to base OS => new build/run may not be reproducible!
○ Issues like security upgrades may force package updates (e.g., openssl)
○ If BaseOS is not controlled by the experiment ensuring consistency is harder: updates will 

happen outside its control

● Also a tension between modern compilers/ABIs on older base OSes

○ Development needs modernity, but Infrastructure needs stability

6



Packaging for Users and Developers

● System must set up a correct runtime environment for:

○ users to run programs in the stack.

○ developers to build projects against packages in the stack

● Runtime environment should be capable of representing a subset of the stack
○ E.g. minimal analysis, or full end-to-end production

● System must be able to chain/layer these subsets to allow sharing and reuse
○ E.g. MyExp (uses) HepPackages (uses) Toolchain

○ Or, DevProject (uses) Toolchain

● See following talk on Spack/SpackDev for more on these topics

7

https://indico.cern.ch/event/587955/contributions/2938565/


Packaging vs Software Development Practices

● Packages should be relocatable after install
○ Can minimize rebuilds from source if install prefix changes between build and install hosts
○ Implies support for developers on techniques (no hardcoded paths, self-location)
○ Implies packaging tool that supports patching/relocating packages

● Requirement overlaps with community efforts on improving Software 
Development practices

○ In this case, how to make your software easy to package!

● It doesn’t matter what tool (CMake, Autotools, …) a software project uses, but it 
does matter that it follows common practices/standards…

○ https://fosdem.org/2018/schedule/event/how_to_make_package_managers_cry
○ HSF C/C++/CMake Project Bootstrap Tool 

8

https://fosdem.org/2018/schedule/event/how_to_make_package_managers_cry/
https://github.com/HSF/tools


Early Observations on Tools: FOSS Community

● Nix
○ Pure functional package manager 

■ See Poster: Software packaging and distribution for LHCb using Nix
○ Builds deep, own libc - excellent reproducibility
○ Excellent support for multiple versions and flexibly constructed sub-environments
○ Not binary relocatable - install path (default, /nix) is a part of the package hash

● Portage
○ Package manager from Gentoo Linux...
○ … but via Gentoo Prefix, can be installed “on top of” Linux base OS, even macOS
○ Builds deep, own libc
○ Supports multiple versions, upgrade and rollback, in each “prefix”

■ Can have several prefixes, plus “overlays” to add your own packages
○ Does support relocation

■ See related presentation tomorrow: Robust Linux Binaries
9

https://nixos.org/
https://indico.cern.ch/event/587955/contributions/2938098/
https://wiki.gentoo.org/wiki/Portage
https://wiki.gentoo.org/wiki/Project:Prefix
https://indico.cern.ch/event/587955/contributions/2938043/


Early Observations on Tools: HPC/Science

● Spack
○ Developed at LLNL for supporting HPC software
○ Significant number of other users across the scientific community
○ Builds deep (not quite down to libc), but can be told about system libraries
○ Support for relocation and layered builds being added by HEP users
○ Runtime/development environment is a WIP (Next talk: SpackDev - Jim Amundson, FNAL)

● Aware of other tools in this domain (EasyBuild, conda), but limited/no 
experience of them in recent WG meetings
○ See HSF-TN-2016-03

10

https://spack.io/
https://indico.cern.ch/event/587955/contributions/2938565/
https://github.com/HSF/documents/blob/master/HSF-TN/2016-03/HSF-TN-2016-03.pdf


Early Observations on Tools: HEP Community

● aliBuild
○ Developed and used by ALICE, now used by FAIR, NICA, and SHiP 
○ Optimised for HEP use
○ Very flexible in use (or not) of system libraries
○ Robust relocation

● LCGCMake
○ Developed by CERN EP-SFT, deployed build products used by:

■ ATLAS, LHCb, SWAN, CERN Beams Department
○ Shallower builds by default (different default from other systems)
○ Small user community (CERN EP-SFT)
○ Supports relocation
○ See presentation tomorrow: Building, testing and distributing common software for the LHC 

experiments
11

https://alisw.github.io/alibuild/
https://gitlab.cern.ch/sft/lcgcmake/
https://indico.cern.ch/event/587955/contributions/2938042/
https://indico.cern.ch/event/587955/contributions/2938042/


Test Driving 
Packaging Tools

● “Test Drive” demos prepared for Nix, 
Portage, Spack, aliBuild tools
○ Exercise use cases through install 

of test HEP package stack
● Each is an End-to-End walkthrough:

○ CentOS7 Docker image to install 
base system + packaging tool

○ Install of single package
○ Install of HEP test stack
○ How to add a new package

● Basic documentation to walk you through, 
linking to official docs for full details

● You are very welcome to try them out!
○ https://github.com/HSF/packaging

/tree/master/testdrive

12

https://docs.google.com/document/d/1LW8OsTFFA9QwsJ9fASkRoJ2E6Gk3UGnOQIcElCL8UCM/edit
https://github.com/HSF/packaging/tree/master/testdrive
https://github.com/HSF/packaging/tree/master/testdrive


Current R&D Activities

● Containers as the deployment mechanism for production and development?
○ Reduce dependency between what sites install and what experiments need to 

Container/Kernel
○ Reduce tension between reusing system packages and rebuilding “everything”?
○ Sweet spot may actually be one of the extreme ends

● “Shallow” stack: allows concentration on packaging HEP Software...
○ … but needs modern, supported OS+toolchain 

● “Deep” stack: guarantees consistency, but requires upstream support 
○ … potentially by Nix and Portage communities. Effort in LHCb on investigating Nix 

● Not so far apart: leverage extensive work and testing by other communities 

● Support for developers to easily and consistently use stacks is paramount 
Spack/SpackDev effort by FNAL 

13

https://indico.cern.ch/event/587955/contributions/2938098/
https://indico.cern.ch/event/587955/contributions/2938565/


Summary

● HSF Packaging WG, via community input, explored the space of tools and 
methods employed to package HEP software stacks
○ Initial Technical Note
○ More in depth enumeration of requirements and use cases

● Extremely useful overview, illustrating complexity…
○ … but highlighting tools and techniques to cope with this
○ … and overlap with non-HEP communities

● Test drives of tools to illustrate use cases and techniques
● R&D efforts on Spack, Nix, and Containers underway across community

● A community effort, so fresh input is always welcome!
14

http://hepsoftwarefoundation.org/activities/packaging.html

