Software Packaging and
Deployment in HEP

Ben Morgan and Graeme Stewart
(for the HEP Software Foundation Packaging Group)

2018-07-11

What are “Packaging” and “Deployment™?

e A highly context/person dependent term! Here:

O The problem of installing and deploying a software stack of N interdependent packages
o Not the build of a single package - handled by package’s local build (CMake/Autotools/...)

e Solution is a process and tool(s) that, to install package “fo0”:
o Installs any packages that Too requires for build/run time
m FEither: Prepares fo0’s source code, build environment, then builds/installs it
m Or: Installs pre-existing “binary package” of foo
o Prepares a runtime environment for the use of foo
o May bundle foo install into “binary package” for clients to install without build-from-source

o Deployment: push/pull of this foo install/binary package, and dependencies,
to another host (via CVMFS, tarball, Container, ...)

HEP Software Foundation: Packaging Working Group

e Packaging and deploying a software stack is a problem faced right across the HEP

and wider scientific community
o Every experiment and software group has to put effort into doing this
o Naively it seems an easy problem, but...
o Quickly gets complicated...
o Seemingly obvious solutions don’t meet requirements...

e Motivated formation of WG in 2015 as a forum for working together to improve:

o Knowledge sharing on tools and workflows in and outside HEP
o How to take most advantage of technologies like CVMFS/Containers
o Support/Good Practices for developers building on, users running, a deployed software stack

e http://hepsoftwarefoundation.org/activities/packaging.html

http://hepsoftwarefoundation.org/activities/packaging.html

Knowledge Sharing on Packaging Tools

FOSS

Nix, Portage

~

/ Science Communities

Spack

~

4 HEP

aliBuild, LCGCMake

N

=~/

Input from experiments large and
small capturing an evolving picture
of tools in use

Initial report: HSF-TN-2016-03
Inputs have helped to enumerate
Requirements/Use Cases of
packaging in HEP

We’ll walk through some of these
to highlight commonalities,
differences and contradictions!

https://github.com/HSF/documents/blob/master/HSF-TN/2016-03/HSF-TN-2016-03.pdf
https://docs.google.com/document/d/1h-r3XPIXXxmr5tThIh6gu6VcXXRhBXtUuOv14ju3oTI/edit?usp=sharing
https://docs.google.com/document/d/1h-r3XPIXXxmr5tThIh6gu6VcXXRhBXtUuOv14ju3oTI/edit?usp=sharing
https://alisw.github.io/alibuild/
https://gitlab.cern.ch/sft/lcgcmake
https://spack.io
https://nixos.org/nix/manual/
https://wiki.gentoo.org/wiki/Portage

The Core Requirements Driving Complexity

e Must be able to install and deploy N Releases of a stack concurrently
o “Release” defined by a set of packages, plus their versions
o If a new Release doesn’t change versions of some packages, should reuse existing installs
o A common requirement across the scientific community

e Must be able to install and deploy Release N against M arch-0s-toolchain

“flavours™:
o E.g. “Stack v1” built against x86_64-centos7-gcc7, ..., x86_64-macos1013-clang9

e This NxM space seems sparsely populated, but there are extra dimensions...
o ISA extensions in arch, e.g. “x86_64+avx512”, to support heterogeneous resources
o Toolchain ABIs, e.g. C++ Standard, Python 2 vs 3, glibc, Optimized vs Debug

o Package VariantstDependencies, e.g. “foo with-X", “bar requires (foo with-X)”

5
D

Reproducibility Requirements

e Builds/installs must be deterministic and reproducible
o Want data+software preservation and reproducible research!

Builds/installs should be able to reuse base OS packages (rpms, debs)
o Minimize wheel reinvention, share effort

But... changes to base OS => new build/run may not be reproducible!

o Issues like security upgrades may force package updates (e.g., openssl)
o If BaseOS is not controlled by the experiment ensuring consistency is harder: updates will
happen outside its control

e Also atension between modern compilers/ABIs on older base OSes

o Development needs modernity, but Infrastructure needs stability

Packaging for Users and Developers

e System must set up a correct runtime environment for:
O users to run programs in the stack.
o developers to build projects against packages in the stack

e Runtime environment should be capable of representing a subset of the stack
o E.g. minimal analysis, or full end-to-end production

e System must be able to chain/layer these subsets to allow sharing and reuse
o E.g. MyExp (uses) HepPackages (uses) Toolchain

o Or, DevProject (uses) Toolchain

e Sce following talk on Spack/SpackDev for more on these topics

https://indico.cern.ch/event/587955/contributions/2938565/

Packaging vs Software Development Practices

e Packages should be relocatable after install
o Can minimize rebuilds from source if install prefix changes between build and install hosts
o Implies support for developers on techniques (no hardcoded paths, self-location)
o Implies packaging tool that supports patching/relocating packages

e Requirement overlaps with community efforts on improving Software

Development practices
o In this case, how to make your software easy to package!

e It doesn’t matter what tool (CMake, Autotools, ...) a software project uses, but it

does matter that it follows common practices/standards...

o https://fosdem.org/2018/schedule/event/how to make package managers cry
o HSF C/C++/CMake Project Bootstrap Tool

https://fosdem.org/2018/schedule/event/how_to_make_package_managers_cry/
https://github.com/HSF/tools

Early Observations on Tools: FOSS Community

o Pure functional package manager

m See Poster: Software packaging and distribution for LHCb using Nix
Builds deep, own libc - excellent reproducibility
o Excellent support for multiple versions and flexibly constructed sub-environments
o Not binary relocatable - install path (default, /niXx) is a part of the package hash

e Portage

o Package manager from Gentoo Linux...
o ... butvia Gentoo Prefix, can be installed “on top of” Linux base OS, even macOS
o Builds deep, own libc
o Supports multiple versions, upgrade and rollback, in each “prefix”
m Can have several prefixes, plus “overlays” to add your own packages
o Does support relocation
m See related presentation tomorrow: Robust Linux Binaries

(@)

https://nixos.org/
https://indico.cern.ch/event/587955/contributions/2938098/
https://wiki.gentoo.org/wiki/Portage
https://wiki.gentoo.org/wiki/Project:Prefix
https://indico.cern.ch/event/587955/contributions/2938043/

Early Observations on Tools: HPC/Science

e Spack
Developed at LLNL for supporting HPC software

Significant number of other users across the scientific community

Builds deep (not quite down to libc), but can be told about system libraries

Support for relocation and layered builds being added by HEP users
Runtime/development environment is a WIP (Next talk: SpackDev - Jim Amundson, FNAL)

O O O O O

e Aware of other tools in this domain (EasyBuild, conda), but limited/no

experience of them in recent WG meetings
o See HSF-TN-2016-03

10

https://spack.io/
https://indico.cern.ch/event/587955/contributions/2938565/
https://github.com/HSF/documents/blob/master/HSF-TN/2016-03/HSF-TN-2016-03.pdf

Early Observations on Tools: HEP Community

e aliBuild
o Developed and used by ALICE, now used by FAIR, NICA, and SHiP
o Optimised for HEP use
o Very flexible in use (or not) of system libraries
o Robust relocation

e LCGCMake
o Developed by CERN EP-SFT, deployed build products used by:
m ATLAS, LHCb, SWAN, CERN Beams Department
Shallower builds by default (different default from other systems)
Small user community (CERN EP-SFT)
Supports relocation
See presentation tomorrow: Building, testing and distributing common software for the LHC

experiments

O O O O

1
D

https://alisw.github.io/alibuild/
https://gitlab.cern.ch/sft/lcgcmake/
https://indico.cern.ch/event/587955/contributions/2938042/
https://indico.cern.ch/event/587955/contributions/2938042/

Test Driving
Packaging Tools

e “Test Drive” demos prepared for Nix,
Portage, Spack, aliBuild tools

o Exercise use cases through install
of test HEP package stack
e Eachis an End-to-End walkthrough:

o CentOS7 Docker image to install
base system + packaging tool

o Install of single package

o Install of HEP test stack

o Howto add a new package

e Basic documentation to walk you through,
linking to official docs for full details
e You are very welcome to try them out!
o https://github.com/HSF/packaging

L] HSF / packaging

<> Code U Issues 1

11 Pull requests 2 I'll Projects 0 |1 Insights

Branch: master v packaging / testdrive / portage /

e + amadio and graeme-a-stewart Add Portage test stack configuration (#13)

@ docker

[E README.md

README.md

Add Portage test stack configuration (#13)

Add Portage test stack configuration (#13)

®© Watch | 22 “Star | 1 YFork 9

Createnew file Findfile = History

Latest commit 254ffa3 on 29 May

a month ago

a month ago

/tree/master/testdrive

Portage Package Manager

Portage [1] is the official package manager and distribution system for Gentoo Linux [2]. It is also used by ChromeOS [3],
Core0S (now called Container Linux) [4], Sabayon [5], Funtoo Linux [6], among others [7].

Portage is based on the concept of ports collections from FreeBSD. Gentoo is sometimes referred to as a meta-
distribution due to the extreme flexibility of Portage, which makes it operating-system-independent. The Gentoo Prefix
project [8] is concerned with using Portage to manage packages in other operating systems, such as other Linux
distributions, as well as BSDs, macQS, Solaris, and Windows.

The Package Manager Specification project (PMS) [9] standardises and documents the behaviour of Portage, allowing
Gentoo ebuild packages to be used with alternative package managers such as Paludis and pkgcore. Its goal is to specify
the exact set of features and behaviour of package managers and ebuilds, serving as an authoritative reference for
Portage.

This document will walk you through preparing and using Portage to install the HSF packaging group's test software stack.
We build upon the documentation for starting a Gentoo Linux container image available on GitHub [10]. If you intend to
install Gentoo Linux on your machine, you are encouraged to follow the Gentoo Handbook for your platform [11]. If you do
not use Linux, you can bootstrap a Gentoo Prefix installation instead [12].

12

https://docs.google.com/document/d/1LW8OsTFFA9QwsJ9fASkRoJ2E6Gk3UGnOQIcElCL8UCM/edit
https://github.com/HSF/packaging/tree/master/testdrive
https://github.com/HSF/packaging/tree/master/testdrive

Current R&D Activities

e Containers as the deployment mechanism for production and development?

o Reduce dependency between what sites install and what experiments need to
Container/Kernel

o Reduce tension between reusing system packages and rebuilding “everything”?
o Sweet spot may actually be one of the extreme ends

e “Shallow” stack: allows concentration on packaging HEP Software...

o ... but needs modern, supported OS+toolchain
e “Deep” stack: guarantees consistency, but requires upstream support
o ... potentially by Nix and Portage communities. Effort in LHCb on investigating Nix

e Not so far apart: leverage extensive work and testing by other communities

e Support for developers to easily and consistently use stacks is paramount
Spack/SpackDev effort by FNAL

13

https://indico.cern.ch/event/587955/contributions/2938098/
https://indico.cern.ch/event/587955/contributions/2938565/

Summary

HSF Packaging WG, via community input, explored the space of tools and

methods employed to package HEP software stacks

o Initial Technical Note
o More in depth enumeration of requirements and use cases

Extremely useful overview, illustrating complexity...
o ... but highlighting tools and techniques to cope with this
o ...and overlap with non-HEP communities

Test drives of tools to illustrate use cases and techniques
R&D efforts on Spack, Nix, and Containers underway across community

A community effort, so fresh input is always welcome!

14

http://hepsoftwarefoundation.org/activities/packaging.html

