

Programming Languages and Compilers (CS 421)

Talia Ringer (they/them) 4218 SC, UIUC

https://courses.grainger.illinois.edu/cs421/fa2023/

Based heavily on slides by Elsa Gunter, which were based in part on slides by Mattox Beckman, as updated by Vikram Adve and Gul Agha

Midterm Study Guide

Three Main Topics of the Course

Objectives for Today

Three Main Topics of the Course

Objectives for Today

III: Language Semantics

Lambda Calculus Axiomatic Semantics

Questions before we start?

- Expresses the **meaning** of syntax
- Static semantics:
 - Meaning based only on the form of the expression without executing it
 - Usually restricted to type checking / type inference
- Dynamic semantics:
 - Describes meaning of executing a program
 - Kinds: operational, axiomatic, denotational

- Expresses the **meaning** of syntax
- Static semantics:
 - Meaning based only on the form of the expression without executing it
 - Usually restricted to type checking / type inference
- Dynamic semantics:
 - Describes meaning of executing a program
 - Kinds: operational, axiomatic, denotational

- Expresses the **meaning** of syntax
- Static semantics:
 - Meaning based only on the form of the expression without executing it
 - Usually restricted to type checking / type inference
- Dynamic semantics:
 - Describes meaning of executing a program
 - Kinds: operational, axiomatic, denotational

- Expresses the meaning of syntax
- Static semantics:
 - Meaning based only on the form of the expression without executing it
 - Usually restricted to type checking / type inference
- Dynamic semantics:
 - Describes meaning of executing a program
 - Kinds: operational, axiomatic, denotational

Dynamic Semantics

- Why so many kinds of dynamic semantics?
 - Different languages better suited to different kinds of semantics
 - Different kinds serve different purposes
 - Common to have multiple kinds and show how they relate to each other
- Dynamic semantics:
 - Describes meaning of executing a program
 - Kinds: operational, axiomatic, denotational

Operational Semantics

What it is:

- Describe how to execute (implement) programs of language on a virtual machine, by describing how to execute each program statement (i.e., following the structure of the program)
- Meaning of program is how its execution changes the state of the machine

- Easy to implement
- Hard to reason about abstractly (without thinking about implementation details)

Operational Semantics

What it is:

- Describe how to execute (implement) programs of language on a virtual machine, by describing how to execute each program statement (i.e., following the structure of the program)
- Meaning of program is how its execution changes the state of the machine

- Easy to implement
- Hard to reason about abstractly (without thinking about implementation details)

What it is:

- Also called a Program Logic
 - Commonly Floyd-Hoare logic
 - These days, also separation logic
- Logical system built from axioms and inference rules
- Often written as pre-conditions and post-conditions on programs

- Mainly suited to imperative languages
- Good for external reasoning

What it is:

- Also called a Program Logic
 - Commonly Floyd-Hoare logic
 - These days, also separation logic
- Logical system built from axioms and inference rules
- Often written as pre-conditions and post-conditions on programs

- Mainly suited to imperative languages
- Good for external reasoning

What it is:

- Also called a Program Logic
 - Commonly Floyd-Hoare logic
 - These days, also separation logic
- Logical system built from axioms and inference rules
- Often written as pre-conditions and post-conditions on programs

- Mainly suited to imperative languages
- Good for external reasoning

- Used to formally prove a post-condition (property) of the state (the values of the program variables) after the execution of program, assuming a pre-condition (another property) holds before execution
- Written: {Precondition} Program {Postcondition}
- Source of idea of loop invariant

- Used to formally prove a post-condition (property) of the state (the values of the program variables) after the execution of program, assuming a pre-condition (another property) holds before execution
- Written :
 - {Precondition} Program {Postcondition}
- Source of idea of loop invariant

- Used to formally prove a post-condition (property) of the state (the values of the program variables) after the execution of program, assuming a pre-condition (another property) holds before execution
- Written: {Precondition} Program {Postcondition}
- Source of idea of loop invariant

What it is:

- Construct function M assigning mathematical meaning to each program construct
 - via category theory, algebra, probability theory, topology, lambda calculus, ...
- Meaning function is compositional: meaning of construct built from meaning of parts

- Useful for proving properties of programs
- Doesn't help much with implementation

Denotational Semantics

What it is:

- Construct function M assigning mathematical meaning to each program construct
 - via category theory, algebra, probability theory, topology, lambda calculus, ...
- Meaning function is compositional: meaning of construct built from meaning of parts

- Useful for **proving** properties of programs
- Doesn't help much with implementation

Operational Semantics

What it is:

- Describe how to execute (implement) programs of language on a virtual machine, by describing how to execute each program statement (i.e., following the structure of the program)
- Meaning of program is how its execution changes the state of the machine

Tradeoffs:

- Easy to implement
- Hard to reason about abstractly (without thinking about implementation details)

- Can be small step or big step
 - Small step: define meaning of one step of execution of a program statement at a time
 - Big step: define meaning in terms of value of execution of whole program statement
- Common to have both and relate them

Operational Semantics

- Can be small step or big step
 - Small step: define meaning of one step of execution of a program statement at a time
 - Big step: define meaning in terms of value of execution of whole program statement
- Common to have both and relate them

Natural (Big Step) Semantics

Natural Semantics

- Also known as Structural Operational
 Semantics or Big Step Semantics
- Provide value for a program by rules and derivations, similar to type derivations
- Rule conclusions look like:

Natural Semantics

- Also known as Structural Operational
 Semantics or Big Step Semantics
- Provide value for a program by rules and derivations, similar to type derivations
- Rule conclusions look like:

```
(C, m) ↓ m'
or
(E, m) ↓ v
```



```
I ∈ Identifiers
```

 $N \in Numerals$

```
    B ::= true | false | B & B | B or B | not B | E < E | E = E</li>
    E ::= N | I | E + E | E * E | E - E | - E | (E)
    C ::= skip | C; C | I := E | if B then C else C fi | while B do C od
```



```
    I ∈ Identifiers
    N ∈ Numerals
    B ::= true | false | B & B | B or B | not B | E < E | E = E</li>
    E ::= N | I | E + E | E * E | E - E | - E | (E)
    C ::= skip | C; C | I := E | if B then C else C fi | while B do C od
```



```
    I ∈ Identifiers
    N ∈ Numerals
    B ::= true | false | B & B | B or B | not B | E < E | E = E</li>
    E ::= N | I | E + E | E * E | E - E | - E | (E)
    C ::= skip | C; C | I := E | if B then C else C fi | while B do C od
```



```
I ∈ Identifiers
N ∈ Numerals
B ::= true | false | B & B | B or B |
not B | E < E | E = E
E ::= N | I | E + E | E * E | E - E | - E | (E)
C ::= skip | C; C | I := E |
if B then C else C fi | while B do C od</pre>
```


Simple Imperative Language Semantics

Look up identifiers

$$\frac{\text{Id}}{(I, m) \Downarrow m(I)}$$

(N, m) ↓ N

Num

Simple Imperative Language Semantics

Simple Imperative Language Semantics

$$(I, m) \Downarrow m(I)$$

$$\frac{Num}{(N, m) \Downarrow N}$$

$$(B, m) \Downarrow v$$

$$(B, m) \Downarrow v$$

$$(true, m) \Downarrow true$$

$$(false, m) \Downarrow false$$

Boolean atoms are **literals** too

Natural Semantics

Questions so far?

(B, m) ↓ v

(B, m)
$$\lor$$
 false $_{And-F}$ (B, m) \lor true (B', m) \lor b $_{And-T}$ (B & B', m) \lor b (B & B', m) \lor b

Boolean combinators have the **standard** meaning

(B, m) ↓ v

(B, m)
$$\lor$$
 false $_{And-F}$ (B, m) \lor true (B', m) \lor b $_{And-T}$ (B & B', m) \lor b (B & B', m) \lor b

(B, m)
$$\Downarrow$$
 true Not-T (B, m) \Downarrow false Not-F (not B, m) \Downarrow false (not B, m) \Downarrow true

Boolean combinators have the **standard** meaning

(B, m) ↓ v

(B, m)
$$\forall$$
 false _{And-F} (B, m) \forall true (B', m) \forall b _{And-T} (B & B', m) \forall false (B & B', m) \forall b

(B, m)
$$\Downarrow$$
 true Not-T (B, m) \Downarrow false Not-F (not B, m) \Downarrow false (not B, m) \Downarrow true

Boolean combinators have the **standard** meaning

(E, m) ↓ v

$$(E, m) \downarrow U$$
 $(E', m) \downarrow V$ $U \sim V = b$ _{Rel} $(E \sim E', m) \downarrow b$

- By $U \sim V = b$, we mean: does (the meaning of) the relation \sim hold on the meaning of U and V?
- May be specified by a mathematical expression/equation or rules matching U and V

(E, m) ↓ v

$$(E, m) \cup U$$
 $(E', m) \cup V$ $U \sim V = b$ _{Rel} $(E \sim E', m) \cup b$

- By U ~ V = b, we mean: does (the meaning of) the relation ~ hold on the meaning of U and V?
- May be specified by a mathematical expression/equation or rules matching U and V

(E, m) ↓ v

$$(E, m) \Downarrow U \quad (E', m) \Downarrow V \quad U \sim V = b$$

$$(E \sim E', m) \Downarrow b$$

- By U ~ V = b, we mean: does (the meaning of) the relation ~ hold on the meaning of U and V?
- May be specified by a mathematical expression/equation or rules matching U and V

(E, m) ↓ v

$$(E, m) \Downarrow U \quad (E', m) \Downarrow V \quad U \sim V = b$$

$$(E \sim E', m) \Downarrow b$$

- By U ~ V = b, we mean: does (the meaning of) the relation ~ hold on the meaning of U and V?
- May be specified by a mathematical expression/equation or rules matching U and V

(E, m) ↓ v

$$(E, m) \cup U$$
 $(E', m) \cup V$ $U \sim V = b$ _{Rel} $(E \sim E', m) \cup b$

- By U ~ V = b, we mean: does (the meaning of) the relation ~ hold on the meaning of U and V?
- May be specified by a mathematical expression/equation or rules matching **U** and **V**

(E, m) ↓ v

$$(E, m) \downarrow U \quad (E', m) \downarrow V \quad U \text{ op } V = N$$

$$(E \text{ op } E', m) \downarrow N$$

where N is the specified value for U op V

Arithmetic expressions are defined **similarly**

(E, m) ↓ v

$$(E, m) \cup U$$
 $(E', m) \cup V$ $U \text{ op } V = N$

$$(E \text{ op } E', m) \cup N$$

where N is the specified value for U op V

Arithmetic expressions are defined **similarly**

Questions so far?

(C, m) **⊎m'**

(skip, m) ↓ m

Commands evaluate to maps of variables (environments or stacks) rather than to values

$$(E, m) \downarrow V$$

$$(I := E, m) \downarrow m[I < -V]$$

$$\frac{(\mathsf{C},\,\mathsf{m})\, \Downarrow\, \mathsf{m}'\, \,\,\, (\mathsf{C}',\,\mathsf{m}')\, \Downarrow\, \mathsf{m}''}{(\mathsf{C};\,\mathsf{C}',\,\mathsf{m})\, \Downarrow\, \mathsf{m}''}$$

Skip doesn't change the state

$$(E, m) \downarrow V$$

$$(I := E, m) \downarrow m[I < -V]$$

$$\frac{(\mathsf{C},\,\mathsf{m})\, \Downarrow\, \mathsf{m}'\, \,\,\, (\mathsf{C}',\,\mathsf{m}')\, \Downarrow\, \mathsf{m}''\, \,\,}{(\mathsf{C};\,\mathsf{C}',\,\mathsf{m})\, \Downarrow\, \mathsf{m}''}$$

(C, m) ↓ m'

$$\frac{skip}{(skip, m) \Downarrow m}$$

Assign updates the state with a **new** mapping of identifier I to value v

$$(E, m) \Downarrow v$$

$$(I := E, m) \Downarrow m[I < -v]$$

$$\frac{(\mathsf{C},\,\mathsf{m})\, \Downarrow\, \mathsf{m}'\, \,\,\, (\mathsf{C}',\,\mathsf{m}')\, \Downarrow\, \mathsf{m}''\, \,\,}{(\mathsf{C};\,\mathsf{C}',\,\mathsf{m})\, \Downarrow\, \mathsf{m}''}$$

(C, m) ↓ m'

$$\frac{skip}{(skip, m) \Downarrow m}$$

Assign updates the state with a **new** mapping of identifier I to value v

$$\frac{(\mathbf{E}, \, \mathbf{m}) \, \Downarrow \, \mathbf{v}}{(\mathrm{I} := \mathbf{E}, \, \mathbf{m}) \, \Downarrow \, \mathbf{m}[\mathrm{I} \! < \! - \! \mathbf{v}]}$$

$$\frac{(\mathsf{C},\,\mathsf{m})\, \Downarrow\, \mathsf{m}'\, \,\,\, (\mathsf{C}',\,\mathsf{m}')\, \Downarrow\, \mathsf{m}''\, \,\,}{(\mathsf{C};\,\mathsf{C}',\,\mathsf{m})\, \Downarrow\, \mathsf{m}''}$$

(C, m) ↓ m'

$$\frac{(\mathsf{E},\,\mathsf{m}) \, \Downarrow \, \mathsf{v}}{(\mathsf{I} := \mathsf{E},\,\mathsf{m}) \, \Downarrow \, \mathsf{m}[\mathsf{I} \! < \! \mathsf{-} \mathsf{v}]}$$

Sequencing has the usual meaning

$$\frac{(\mathsf{C},\,\mathsf{m})\, \Downarrow\, \mathsf{m}' \quad (\mathsf{C}',\,\mathsf{m}')\, \Downarrow\, \mathsf{m}''}{(\mathsf{C};\,\mathsf{C}',\,\mathsf{m})\, \Downarrow\, \mathsf{m}''}$$

(C, m) ↓ m'

$$\frac{skip}{(skip, m) \Downarrow m}$$

$$\frac{(E, m) \Downarrow v}{(I := E, m) \Downarrow m[I < -v]}$$

Sequencing has the usual meaning

$$\frac{(\mathbf{C}, \mathbf{m}) \Downarrow \mathbf{m'} \quad (\mathbf{C'}, \mathbf{m'}) \Downarrow \mathbf{m''}}{(\mathbf{C'}, \mathbf{C'}, \mathbf{m}) \Downarrow \mathbf{m''}}$$

(C, m) ↓ m'

$$\frac{(E, m) \Downarrow v}{(I := E, m) \Downarrow m[I < -v]}$$

Sequencing has the usual meaning

$$\frac{(\mathsf{C},\,\mathsf{m}) \, \Downarrow \, \mathbf{m'} \quad (\mathbf{C'},\,\mathbf{m'}) \, \Downarrow \, \mathbf{m''}_{\mathsf{Seq}}}{(\mathsf{C};\,\mathbf{C'},\,\mathsf{m}) \, \Downarrow \, \mathsf{m''}}$$

(C, m) ↓ m'

$$\frac{\text{skip}}{(\text{skip, m})} \downarrow \text{m}$$

$$\frac{(E, m) \Downarrow v}{(I := E, m) \Downarrow m[I < -v]}$$

Sequencing has the usual meaning

$$\frac{(\mathsf{C},\,\mathsf{m}) \, \Downarrow \, \mathsf{m'} \, (\mathsf{C'},\,\mathsf{m'}) \, \Downarrow \, \mathsf{m''}}{(\mathsf{C};\,\mathsf{C'},\,\mathsf{m}) \, \Downarrow \, \mathsf{m''}}$$

(C, m) ↓ m'

If then else is split into two cases, one for **true** and one for **false**

(B, m)
$$\Downarrow$$
 true (C, m) \Downarrow m' (if B then C else C' fi, m) \Downarrow m'

(B, m)
$$\Downarrow$$
 false (C', m) \Downarrow m' _{If-F} (if B then C else C' fi, m) \Downarrow m'

(C, m) ↓ m'

If then else is split into two cases, one for **true** and one for **false**

(B, m)
$$\forall$$
 true (C, m) \forall m' _{If-T} (if B then C else C' fi, m) \forall m'

(B, m)
$$\Downarrow$$
 false (C', m) \Downarrow m' _{If-F} (if B then C else C' fi, m) \Downarrow m'

(C, m) ↓ m'

If then else is split into two cases, one for **true** and one for **false**

(B, m)
$$\Downarrow$$
 true (C, m) \Downarrow m' _{If-T} (if B then C else C' fi, m) \Downarrow m'

(B, m)
$$\Downarrow$$
 false (C', m) \Downarrow m' _{If-F} (if B then C else C' fi, m) \Downarrow m'

(C, m) ↓ m'

(B, m)
$$\lor$$
 false while-F (while B do C od, m) \lor m

(B, m)
$$\Downarrow$$
 true
(C, m) \Downarrow m'
(while B do C od, m') \Downarrow m"
while-T
(while B do C od, m) \Downarrow m"

While is likewise split into two cases, one for **true** and one for **false**

(C, m) ↓ m'

(B, m)
$$\Downarrow$$
 true
(C, m) \Downarrow m'
(while B do C od, m') \Downarrow m" while-T
(while B do C od, m) \Downarrow m"

While is likewise split into two cases, one for **true** and one for **false**

(C, m) ↓ m'

(B, m)
$$\Downarrow$$
 true
(C, m) \Downarrow m'
(while B do C od, m') \Downarrow m" while-T
(while B do C od, m) \Downarrow m"

While is likewise split into two cases, one for **true** and one for **false**

(C, m) ↓ m'

(B, m)
$$\Downarrow$$
 false while-F (while B do C od, m) \Downarrow m

While is likewise split into two cases, one for **true** and one for **false**

(C, m) ↓ m'

(B, m)
$$\Downarrow$$
 false while-F (while B do C od, m) \Downarrow m

(B, m) ↓ true (C, m) ↓ m' (while B do C od, m') ↓ m" while B do C od, m) ↓ m"

While is likewise split into two cases, one for **true** and one for **false**

(C, m) ↓ m'

(B, m)
$$\Downarrow$$
 false while-F (while B do C od, m) \Downarrow m

While is likewise split into two cases, one for **true** and one for **false**

(C, m) ↓ m'

(B, m)
$$\Downarrow$$
 false while-F (while B do C od, m) \Downarrow m

While is likewise split into two cases, one for **true** and one for **false**

Questions so far?

Example Derivation

Example

Want to determine the **semantics** of this command, using the **natural semantics** for the language that we just defined.

(if
$$x > 5$$
 then $y := 2 + 3$ else $y := 3 + 4$ fi, $\{x -> 7\}$) \downarrow ??

Example

First, **if-then-else rule**, but we don't know if the guard is **true** or **false** yet.

If-??

(if
$$x > 5$$
 then $y := 2 + 3$ else $y := 3 + 4$ fi, $\{x -> 7\}$) \Downarrow ??

Example

First, **if-then-else rule**, but we don't know if the guard is **true** or **false** yet.

$$(x > 5, \{x -> 7\}) \downarrow ??$$

(if $x > 5$ then $y := 2 + 3$ else $y := 3 + 4$ fi, $\{x -> 7\}) \downarrow ??$

Example Derivation

The guard is a **relation**.

The guard is a **relation**.

$$(x, \{x->7\}) \cup ??$$
 $(5, \{x->7\}) \cup ??$ $?? > ?? = ??$ Rel $(x > 5, \{x -> 7\}) \cup ??$ $(if x > 5 then y := 2 + 3 else y := 3 + 4 fi, $\{x -> 7\}) \cup ??$$

So we determine the meaning of **each side** of the **relation** ...

$$(\mathbf{x}, \{x->7\}) \cup ??$$
 $(\mathbf{5}, \{x->7\}) \cup ??$ $?? > ?? = ??$ Rel $(\mathbf{x} > \mathbf{5}, \{x -> 7\}) \cup ??$ (if $x > 5$ then $y := 2 + 3$ else $y := 3 + 4$ fi, $\{x -> 7\}) \cup ??$

So we determine the meaning of **each side** of the **relation** ...

$$\frac{\mathbf{x}, \{x->7\}) \cup \mathbf{7}}{(\mathbf{x}, \{x->7\}) \cup \mathbf{7}} (\mathbf{5}, \{x->7\}) \cup \mathbf{7} > \mathbf{??} = \mathbf{??} \\
\underline{(\mathbf{x} > \mathbf{5}, \{x -> 7\}) \cup \mathbf{??}} \\
\underline{(\mathbf{f} x > 5 \text{ then } y := 2 + 3 \text{ else } y := 3 + 4 \text{ fi,} \\
\{x -> 7\}) \cup \mathbf{??}$$

So we determine the meaning of **each side** of the **relation** ...

$$\frac{\text{Id}}{(\mathbf{x}, \{x->7\}) \cup \mathbf{7}} (\mathbf{5}, \{x->7\}) \cup \mathbf{5} \qquad \mathbf{7} > \mathbf{5} = \mathbf{??}$$

$$\frac{(\mathbf{x} > \mathbf{5}, \{x -> 7\}) \cup \mathbf{??}}{(\text{if } x > 5 \text{ then } y := 2 + 3 \text{ else } y := 3 + 4 \text{ fi,}}{(x -> 7) \cup \mathbf{??}}$$

Then we use the **primitive** meaning of the **> relation**

$$\frac{\text{Id}}{(\mathbf{x}, \{x->7\}) \cup \mathbf{7}} (\mathbf{5}, \{x->7\}) \cup \mathbf{5} \qquad \mathbf{7} > \mathbf{5} = \mathbf{??}$$

$$\frac{(\mathbf{x} > \mathbf{5}, \{x -> 7\}) \cup \mathbf{??}}{(\text{if } x > 5 \text{ then } y := 2 + 3 \text{ else } y := 3 + 4 \text{ fi,}}{(x -> 7) \cup \mathbf{??}}$$

Then we use the **primitive** meaning of the **> relation**

$$\frac{\text{Id}}{(\mathbf{x}, \{x->7\}) \cup \mathbf{7}} (\mathbf{5}, \{x->7\}) \cup \mathbf{5} \qquad \mathbf{7} > \mathbf{5} = \mathbf{true} \quad \text{Rel}}$$

$$\frac{(\mathbf{x} > \mathbf{5}, \{x -> 7\}) \cup \mathbf{??}}{(\text{if } x > 5 \text{ then } y := 2 + 3 \text{ else } y := 3 + 4 \text{ fi,}}$$

$$\{x -> 7\}) \cup \mathbf{??}$$

Now, for the **if-then-else rule**, we know that the guard is **true**.

$$\frac{\text{Num}}{(x, \{x->7\}) \lor 7} (5, \{x->7\}) \lor 5 = \textbf{true} \quad \text{Rel}$$

$$\frac{(x > 5, \{x -> 7\}) \lor ??}{(\text{if } x > 5 \text{ then } y := 2 + 3 \text{ else } y := 3 + 4 \text{ fi,}}{(x -> 7)} \lor ??$$

Now, for the **if-then-else rule**, we know that the guard is **true**.

$$\frac{\text{Num}}{(x, \{x->7\}) \lor 7} (5, \{x->7\}) \lor 5 = \textbf{true} \quad \text{Rel}$$

$$\frac{(x > 5, \{x -> 7\}) \lor \textbf{true}}{(\text{if } x > 5 \text{ then } y := 2 + 3 \text{ else } y := 3 + 4 \text{ fi,}}$$

$$\{x -> 7\}) \lor ??$$

We are low on slide room, so let's squish what we're done with

$$\frac{\text{Num}}{(x, \{x->7\}) \lor 7} (5, \{x->7\}) \lor 5 = \text{true} \quad \text{Rel}$$

$$\frac{(x > 5, \{x -> 7\}) \lor \text{true}}{(\text{if } x > 5 \text{ then } y := 2 + 3 \text{ else } y := 3 + 4 \text{ fi,}$$

$$\{x -> 7\}) \lor ??$$

We are low on slide room, so let's squish what we're done with

Now what?

Now what?

We need the meaning of the **if** branch, not the **else** branch

This is an **assignment**

$$(2+3, \{x->7\}) \downarrow ??$$
Assign
$$(y := 2 + 3, \{x -> 7\})$$

$$(x > 5, \{x -> 7\}) \downarrow \text{ true} \qquad \downarrow ??$$

$$(if x > 5 \text{ then } y := 2 + 3 \text{ else } y := 3 + 4 \text{ fi,}$$

$$\{x -> 7\}) \downarrow ??$$

The body is an **arithmetic** expression

$$(2, \{x->7\}) \Downarrow ?? \quad (3, \{x->7\}) \Downarrow ?? \quad ?? + ?? = ?? \\ \underbrace{(2+3, \{x->7\}) \Downarrow ??}_{Assign}$$

$$(y := 2 + 3, \{x -> 7\})$$

$$(x > 5, \{x -> 7\}) \Downarrow true \qquad \Downarrow ??$$

$$(if x > 5 then y := 2 + 3 else y := 3 + 4 fi, \\ \{x -> 7\}) \Downarrow ??$$

Determine meaning of **each side**

Then use the **primitive** meaning of the operation

Questions so far?

Awkward Example

Let in Command

$$(E, m) \lor v (C, m[I < -v]) \lor m'$$

$$(let I = E in C, m) \lor m'$$

Where m''(y) = m'(y) for $y \ne I$ and m''(I) = m(I) if m(I) is defined, and m''(I) is undefined otherwise

Let in Command

$$(x,\{x->5\}) \downarrow 5 \quad (3,\{x->5\}) \downarrow 3$$

$$(x+3,\{x->5\}) \downarrow 8$$

$$(5,\{x->17\}) \downarrow 5 \quad (x:=x+3,\{x->5\}) \downarrow \{x->8\}$$

$$(\text{let } x = 5 \text{ in } (x:=x+3), \{x->17\}) \downarrow ??$$

Let in Command

$$(x,\{x->5\}) \downarrow 5 \quad (3,\{x->5\}) \downarrow 3$$

$$(x+3,\{x->5\}) \downarrow 8$$

$$(5,\{x->17\}) \downarrow 5 \quad (x:=x+3,\{x->5\}) \downarrow \{x->8\}$$

$$(\text{let } x = 5 \text{ in } (x:=x+3), \{x->17\}) \downarrow \{x->17\}$$

Comment

- Simple Imperative Programming Language introduces variables **implicitly** through assignment
- The let-in command introduces scoped variables explictly
- Clash of constructs apparent in awkward semantics

Questions so far?

Implementing Semantics

- A compiler from language L1 to language L2 is a program that takes an L1 program and for each piece of code in L1 generates a piece of code in L2 of same meaning
- An interpreter of L1 in L2 is an L2 program that executes the meaning of a given L1 program
- Compiler would examine the body of a loop once; an interpreter would examine it every time the loop was executed

Interpretation Versus Compilation

- A compiler from language L1 to language L2 is a program that takes an L1 program and for each piece of code in L1 generates a piece of code in L2 of same meaning
- An interpreter of L1 in L2 is an L2 program that executes the meaning of a given L1 program
- Compiler would examine the body of a loop once; an interpreter would examine it every time the loop was executed

Interpreter

- An Interpreter represents the operational semantics of a language L1 (source language) in the language of implementation L2 (target language)
- Built incrementally
 - Start with literals
 - Variables
 - Primitive operations
 - Evaluation of expressions
 - Evaluation of commands/declarations

Interpreter

- Takes abstract syntax trees as input
 - In simple cases could be just strings
- One procedure for each syntactic category (nonterminal)
 - e.g., one for expressions, another for commands
- From semantics to implementation:
 - If Natural Semantics used, tells how to compute final value from code
 - If Transition Semantics used, tells how to compute next "state"
 - To get final value, put in a loop

Interpreter

- Takes abstract syntax trees as input
 - In simple cases could be just strings
- One procedure for each syntactic category (nonterminal)
 - e.g., one for expressions, another for commands
- From semantics to implementation:
 - If Natural Semantics used, tells how to compute final value from code
 - If Transition Semantics used, tells how to compute next "state"
 - To get final value, put in a loop

Natural Semantics Example

- compute_exp (Var(v), m) = look_up v m
- compute_exp (Int(n), _) = Num (n)
- **...**
- compute_com(IfExp(b,c1,c2),m) =
 if compute_exp (b,m) = Bool(true)
 then compute_com (c1,m)
 else compute_com (c2,m)

Natural Semantics Example

```
compute_com(While(b,c), m) =
  if compute_exp (b,m) = Bool(false)
  then m
  else compute_com
    (While(b,c), compute_com(c,m))
```

- May fail to terminate exceed stack limits
- Returns no useful information then

Questions?

No Class Thursday for Midterm!