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    Questions before we start?
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Semantics

■ Expresses the meaning of syntax
■ Static semantics:

■ Meaning based only on the form of the 
expression without executing it

■ Usually restricted to type checking / type 
inference

■ Dynamic semantics:
■ Describes meaning of executing a program
■ Kinds: operational, axiomatic, denotational
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Dynamic Semantics

■ Why so many kinds of dynamic semantics?
■ Different languages better suited to different 

kinds of semantics
■ Different kinds serve different purposes
■ Common to have multiple kinds and show how 

they relate to each other

Semantics
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Operational Semantics

■ What it is:
■ Describe how to execute (implement) programs 

of language on a virtual machine, by describing 
how to execute each program statement 
(i.e., following the structure of the program)

■ Meaning of program is how its execution 
changes the state of the machine

■ Tradeoffs:
■ Easy to implement
■ Hard to reason about abstractly (without 

thinking about implementation details)

Semantics
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Axiomatic Semantics

■ What it is:
■ Also called a Program Logic

■ Commonly Floyd-Hoare logic
■ These days, also separation logic

■ Logical system built from axioms  and inference 
rules

■ Often written as pre-conditions and 
post-conditions on programs

■ Tradeoffs:
■ Mainly suited to imperative languages
■ Good for external reasoning

Semantics
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Axiomatic Semantics

■ Used to formally prove a post-condition 
(property) of the state (the values of the 
program variables) after the execution of 
program, assuming a pre-condition (another 
property) holds before execution

■ Written :
{Precondition} Program {Postcondition}

■ Source of idea of loop invariant 

Semantics
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Denotational Semantics

■ What it is:
■ Construct function M assigning mathematical 

meaning to each program construct
■ via category theory, algebra, probability 

theory, topology, lambda calculus, … 
■ Meaning function is compositional: meaning of 

construct built from meaning of parts
■ Tradeoffs:

■ Useful for proving properties of programs
■ Doesn’t help much with implementation

Semantics
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Operational Semantics

■ What it is:
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Operational Semantics

■ Can be small step or big step
■ Small step: define meaning of one step of 

execution of a program statement at a time 
■ Big step: define meaning in terms of value of 

execution of whole program statement
■ Common to have both and relate them 

Semantics
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■ Big step: define meaning in terms of value of 

execution of whole program statement
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                    Semantics
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    Natural (Big Step) Semantics
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Natural Semantics

■ Also known as Structural Operational 
Semantics or Big Step Semantics

■ Provide value for a program by rules and 
derivations, similar to type derivations

■ Rule conclusions look like: 
(C, m) ⇓ m’

or
(E, m) ⇓ v

Natural Semantics
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Simple Imperative Language Syntax

I ∈ Identifiers
N ∈ Numerals
B ::= true | false | B & B | B or B | 
  not B | E < E | E = E
E ::= N | I | E + E | E * E | E - E | - E | (E)
C ::= skip | C; C | I := E |
  if B then C else C fi | while B do C od

Natural Semantics
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Simple Imperative Language Syntax
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Simple Imperative Language Semantics

                         (I, m) ⇓ m(I)
  
                           (N, m) ⇓ N

 (true, m) ⇓ true                 (false, m) ⇓ false
True False

Num

Id
(E, m) ⇓ v

Natural Semantics

Look up 
identifiers
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                         (I, m) ⇓ m(I)
  
                           (N, m) ⇓ N

 (true, m) ⇓ true                 (false, m) ⇓ false
True False

Num

Id
(E, m) ⇓ v

Simple Imperative Language Semantics

Natural Semantics

Numerals 
are literals
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                         (I, m) ⇓ m(I)
  
                           (N, m) ⇓ N

 (true, m) ⇓ true                 (false, m) ⇓ false
True False

Num

Id
(E, m) ⇓ v

(B, m) ⇓ v

Simple Imperative Language Semantics

Natural Semantics

Boolean atoms 
are literals too
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    Questions so far?

Natural Semantics
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    (B, m) ⇓ false        (B, m) ⇓ true  (B’, m) ⇓ b
 (B & B’, m) ⇓ false          (B & B’, m) ⇓ b

  (B, m) ⇓ true            (B, m) ⇓ false  (B’, m) ⇓ b
(B or B’, m) ⇓ true           (B or B’, m) ⇓ b

          (B, m) ⇓ true               (B, m) ⇓ false
        (not B, m) ⇓ false         (not B, m) ⇓ true

And-F And-T

Or-T Or-F

Not-T Not-F

(B, m) ⇓ v

Simple Imperative Language Semantics

Natural Semantics

Boolean combinators have 
the standard meaning
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        (E, m) ⇓ U    (E’, m) ⇓ V     U ~ V = b
(E ~ E’, m) ⇓ b

■ By U ~ V = b, we mean: does (the meaning of) 
the relation ~ hold on the meaning of U and V?

■ May be specified by a mathematical 
expression/equation or rules matching U and V

Rel

(E, m) ⇓ v

Simple Imperative Language Semantics

Natural Semantics

Relations like <, >, and = are defined in 
terms of their primitive meanings
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         (E, m) ⇓ U    (E’, m) ⇓ V    U op V = N
(E op E’, m) ⇓ N

where N is the specified value for U op V

Arith

(E, m) ⇓ v

Simple Imperative Language Semantics

Natural Semantics

Arithmetic expressions 
are defined similarly
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    Questions so far?

Natural Semantics
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                          (skip, m) ⇓ m

                             (E, m) ⇓ v
                      (I := E, m) ⇓ m[I<-v] 

                   (C, m) ⇓ m’    (C’, m’) ⇓ m’’
     (C; C’, m) ⇓ m’’

Skip
(C, m) ⇓m’

Assign

Seq

Simple Imperative Language Semantics

Natural Semantics

Commands evaluate to 
maps of variables 

(environments or stacks) 
rather than to values
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                             (E, m) ⇓ v
                      (I := E, m) ⇓ m[I<-v] 

                   (C, m) ⇓ m’    (C’, m’) ⇓ m’’
     (C; C’, m) ⇓ m’’

Skip
(C, m) ⇓ m’

Assign

Seq

Simple Imperative Language Semantics

Natural Semantics

Skip doesn’t 
change the state
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                 (B, m) ⇓ true   (C, m) ⇓ m’
(if B then C else C’ fi, m) ⇓ m’

                (B, m) ⇓ false   (C’, m) ⇓ m’
                (if B then C else C’ fi, m) ⇓ m’

(C, m) ⇓ m’

If-T

If-F

Simple Imperative Language Semantics

Natural Semantics

If then else is split into two cases, 
one for true and one for false 
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                        (B, m) ⇓ false
                     (while B do C od, m) ⇓ m

                       (B, m) ⇓ true   
                                          (C, m) ⇓ m’  

(while B do C od, m’) ⇓ m’’
(while B do C od, m) ⇓ m’’

(C, m) ⇓ m’

While-F

While-T

Simple Imperative Language Semantics

Natural Semantics

While is likewise split into two cases, 
one for true and one for false 
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    Questions so far?



68

    Example Derivation
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Example

                                  (2,{x->7})⇓2    (3,{x->7}) ⇓3
                                             (2+3, {x->7})⇓5

(x,{x->7})⇓7   (5,{x->7})⇓5        (y:= 2 + 3, {x-> 7}
 (x > 5, {x -> 7})⇓true              ⇓{x-   >7, y->5} 

     (if x > 5 then y := 2 + 3 else y := 3 + 4 fi, 
      {x -> 7}) ⇓ ??

Example Derivation

Want to determine the semantics of this 
command, using the natural semantics 

for the language that we just defined. 
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                                  (2,{x->7})⇓2    (3,{x->7}) ⇓3
                                             (2+3, {x->7})⇓5

(x,{x->7})⇓7   (5,{x->7})⇓5        (y:= 2 + 3, {x-> 7}
 (x > 5, {x -> 7})⇓true              ⇓{x-   >7, y->5} 

     (if x > 5 then y := 2 + 3 else y := 3 + 4 fi, 
      {x -> 7}) ⇓ ??

If-??

Example

Example Derivation

First, if-then-else rule, but we don’t 
know if the guard is true or false yet.
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(x,{x->7})⇓7   (5,{x->7})⇓5        (y:= 2 + 3, {x-> 7}
  (x > 5, {x -> 7}) ⇓ ??              ⇓{x-   >7, y->5} 

     (if x > 5 then y := 2 + 3 else y := 3 + 4 fi, 
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If-??

First, if-then-else rule, but we don’t 
know if the guard is true or false yet.

Example

Example Derivation
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                                  (2,{x->7})⇓2    (3,{x->7}) ⇓3
                                             (2+3, {x->7})⇓5

(x,{x->7})⇓7   (5,{x->7})⇓5        (y:= 2 + 3, {x-> 7}
  (x > 5, {x -> 7}) ⇓ ??              ⇓{x-   >7, y->5} 

     (if x > 5 then y := 2 + 3 else y := 3 + 4 fi, 
      {x -> 7}) ⇓ ??

If-??

The guard is a relation.

Example

Example Derivation
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                                   (2+3, {x->7})⇓5
                          (2+3, {x->7})⇓5

   (x, {x->7})⇓??    (5, {x->7})⇓??     ?? > ?? = ??
    (x > 5, {x -> 7}) ⇓ ??              ⇓{x-   >7, y->5} 
     (if x > 5 then y := 2 + 3 else y := 3 + 4 fi, 
      {x -> 7}) ⇓ ??

If-??

     

Rel

Example

Example Derivation

The guard is a relation.
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                                   (2+3, {x->7})⇓5
                          (2+3, {x->7})⇓5

   (x, {x->7})⇓??   (5, {x->7})⇓??     ?? > ?? = ??
    (x > 5, {x -> 7}) ⇓ ??              ⇓{x-   >7, y->5} 
     (if x > 5 then y := 2 + 3 else y := 3 + 4 fi, 
      {x -> 7}) ⇓ ??

If-??

     

Rel

Example

Example Derivation

So we determine the meaning 
of each side of the relation … 
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                                   (2+3, {x->7})⇓5
                          (2+3, {x->7})⇓5

   (x, {x->7})⇓7    (5, {x->7})⇓??     7 > ?? = ??
    (x > 5, {x -> 7}) ⇓ ??              ⇓{x-   >7, y->5} 
     (if x > 5 then y := 2 + 3 else y := 3 + 4 fi, 
      {x -> 7}) ⇓ ??

If-??

     

Rel

Example

Example Derivation

So we determine the meaning 
of each side of the relation … 

     Id
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                                   (2+3, {x->7})⇓5
                          (2+3, {x->7})⇓5

   (x, {x->7})⇓7    (5, {x->7})⇓5       7 > 5 = ??
    (x > 5, {x -> 7}) ⇓ ??              ⇓{x-   >7, y->5} 
     (if x > 5 then y := 2 + 3 else y := 3 + 4 fi, 
      {x -> 7}) ⇓ ??

If-??

     

Rel

Example

Example Derivation

So we determine the meaning 
of each side of the relation … 

     Id      Num
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                                   (2+3, {x->7})⇓5
                          (2+3, {x->7})⇓5

   (x, {x->7})⇓7    (5, {x->7})⇓5       7 > 5 = ??
    (x > 5, {x -> 7}) ⇓ ??              ⇓{x-   >7, y->5} 
     (if x > 5 then y := 2 + 3 else y := 3 + 4 fi, 
      {x -> 7}) ⇓ ??

If-??

     

Rel

Example

Example Derivation

     Id      Num

Then we use the primitive 
meaning of the > relation 
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                                   (2+3, {x->7})⇓5
                          (2+3, {x->7})⇓5

   (x, {x->7})⇓7    (5, {x->7})⇓5       7 > 5 = true
    (x > 5, {x -> 7}) ⇓ ??              ⇓{x-   >7, y->5} 
     (if x > 5 then y := 2 + 3 else y := 3 + 4 fi, 
      {x -> 7}) ⇓ ??

If-??

     

Rel

Example

Example Derivation

     Id      Num

Then we use the primitive 
meaning of the > relation 
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                                   (2+3, {x->7})⇓5
                          (2+3, {x->7})⇓5

   (x, {x->7})⇓7     (5, {x->7})⇓5       7 > 5 = true
    (x > 5, {x -> 7}) ⇓ ??              ⇓{x-   >7, y->5} 
     (if x > 5 then y := 2 + 3 else y := 3 + 4 fi, 
      {x -> 7}) ⇓ ??

If-??

     

Rel

Example

Example Derivation

     Id      Num

Now, for the if-then-else rule, 
we know that the guard is true.
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                                   (2+3, {x->7})⇓5
                          (2+3, {x->7})⇓5

   (x, {x->7})⇓7     (5, {x->7})⇓5       7 > 5 = true
    (x > 5, {x -> 7}) ⇓ true              ⇓{x-   >7, y->5} 
     (if x > 5 then y := 2 + 3 else y := 3 + 4 fi, 
      {x -> 7}) ⇓ ??

If-T

     

Rel

Example

Example Derivation

     Id      Num

Now, for the if-then-else rule, 
we know that the guard is true.
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                                   (2+3, {x->7})⇓5
                          (2+3, {x->7})⇓5

   (x, {x->7})⇓7     (5, {x->7})⇓5       7 > 5 = true
    (x > 5, {x -> 7}) ⇓ true              ⇓{x-   >7, y->5} 
     (if x > 5 then y := 2 + 3 else y := 3 + 4 fi, 
      {x -> 7}) ⇓ ??

If-T

     

Rel

Example

Example Derivation

     Id      Num

We are low on slide room, so let’s 
squish what we’re done with
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                                   (2+3, {x->7})⇓5
                          (2+3, {x->7})⇓5

                    …
    (x > 5, {x -> 7}) ⇓ true              ⇓{x-   >7, y->5} 
     (if x > 5 then y := 2 + 3 else y := 3 + 4 fi, 
      {x -> 7}) ⇓ ??

If-T

     

Rel

We are low on slide room, so let’s 
squish what we’re done with

Example

Example Derivation
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                                   (2+3, {x->7})⇓5
                          (2+3, {x->7})⇓5

                    …
    (x > 5, {x -> 7}) ⇓ true              ⇓{x-   >7, y->5} 
     (if x > 5 then y := 2 + 3 else y := 3 + 4 fi, 
      {x -> 7}) ⇓ ??

If-T

     

Rel

Example

Example Derivation

Now what?
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                                   (2+3, {x->7})⇓5
                          (2+3, {x->7})⇓5

                    …
    (x > 5, {x -> 7}) ⇓ true              ⇓{x-   >7, y->5} 
     (if x > 5 then y := 2 + 3 else y := 3 + 4 fi, 
      {x -> 7}) ⇓ ??

If-T

     

Rel

Example

Example Derivation

Now what?
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                                   (2+3, {x->7})⇓5
                          (2+3, {x->7})⇓5

                    …                       (y := 2 + 3, {x -> 7})
    (x > 5, {x -> 7}) ⇓ true       ⇓ ??        
     (if x > 5 then y := 2 + 3 else y := 3 + 4 fi, 
      {x -> 7}) ⇓ ??

If-T

     

Rel

Example

Example Derivation

We need the meaning of the 
if branch, not the else branch 
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                                   (2+3, {x->7})⇓5
                          (2+3, {x->(2+3, {x->7})⇓??5

                    …                       (y := 2 + 3, {x -> 7})
    (x > 5, {x -> 7}) ⇓ true       ⇓ ??        
     (if x > 5 then y := 2 + 3 else y := 3 + 4 fi, 
      {x -> 7}) ⇓ ??

If-T

     

Rel

Example

Example Derivation

This is an assignment

Assign
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   (2, {x->7})⇓??   (3, {x->7})⇓??  ?? + ?? = ?? 
                          (2+3, {x->(2+3, {x->7})⇓??5

                    …                       (y := 2 + 3, {x -> 7})
    (x > 5, {x -> 7}) ⇓ true       ⇓ ??        
     (if x > 5 then y := 2 + 3 else y := 3 + 4 fi, 
      {x -> 7}) ⇓ ??

If-T

     

Rel

Example

Example Derivation

The body is an 
arithmetic expression 

Assign

Arith
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   (2, {x->7})⇓2     (3, {x->7})⇓3    2 + 3 = ?? 
                          (2+3, {x->(2+3, {x->7})⇓??5

                    …                       (y := 2 + 3, {x -> 7})
    (x > 5, {x -> 7}) ⇓ true       ⇓ ??        
     (if x > 5 then y := 2 + 3 else y := 3 + 4 fi, 
      {x -> 7}) ⇓ ??

If-T

     

Rel

Example

Example Derivation

Assign

Arith

     Num     Num

Determine meaning 
of each side
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   (2, {x->7})⇓2     (3, {x->7})⇓3      2 + 3 = 5 
                          (2+3, {x->(2+3, {x->7})⇓??5

                    …                       (y := 2 + 3, {x -> 7})
    (x > 5, {x -> 7}) ⇓ true       ⇓ ??        
     (if x > 5 then y := 2 + 3 else y := 3 + 4 fi, 
      {x -> 7}) ⇓ ??

If-T

     

Rel

Example

Example Derivation

Assign

Arith

     Num     Num

Then use the primitive 
meaning of the operation
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   (2, {x->7})⇓2     (3, {x->7})⇓3      2 + 3 = 5 
                          (2+3, {x->(2+3, {x->7})⇓??5

                    …                       (y := 2 + 3, {x -> 7})
    (x > 5, {x -> 7}) ⇓ true       ⇓ ??        
     (if x > 5 then y := 2 + 3 else y := 3 + 4 fi, 
      {x -> 7}) ⇓ ??

If-T

     

Rel

Example

Example Derivation

Assign

Arith

     Num     Num

We can now fill in the 
remaining details
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   (2, {x->7})⇓2     (3, {x->7})⇓3      2 + 3 = 5 
                          (2+3, {x->(2+3, {x->7})⇓55

                    …                       (y := 2 + 3, {x -> 7})
    (x > 5, {x -> 7}) ⇓ true       ⇓ ??        
     (if x > 5 then y := 2 + 3 else y := 3 + 4 fi, 
      {x -> 7}) ⇓ ??

If-T

     

Rel

Example

Example Derivation

Assign

Arith

     Num     Num

We can now fill in the 
remaining details
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   (2, {x->7})⇓2     (3, {x->7})⇓3      2 + 3 = 5 
                          (2+3, {x->(2+3, {x->7})⇓55

                    …                       (y := 2 + 3, {x -> 7})
    (x > 5, {x -> 7}) ⇓ true       ⇓ {x->7, y->5}        
     (if x > 5 then y := 2 + 3 else y := 3 + 4 fi, 
      {x -> 7}) ⇓ ??

If-T

     

Rel

Example

Example Derivation

Assign

Arith

     Num     Num

We can now fill in the 
remaining details
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   (2, {x->7})⇓2     (3, {x->7})⇓3      2 + 3 = 5 
                          (2+3, {x->(2+3, {x->7})⇓55

                    …                       (y := 2 + 3, {x -> 7})
    (x > 5, {x -> 7}) ⇓ true       ⇓ {x->7, y->5}        
     (if x > 5 then y := 2 + 3 else y := 3 + 4 fi, 
      {x -> 7}) ⇓ {x->7, y->5}

If-T

     

Rel

Example

Example Derivation

Assign

Arith

     Num     Num

We can now fill in the 
remaining details
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    Questions so far?



95

    Awkward Example
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Let in Command

(E, m) ⇓v  (C, m[I<-v]) ⇓ m’
(let I = E in C, m) ⇓ m’ ’

Where m’’ (y) = m’ (y) for y≠ I and 
m’’ (I) = m (I) if m(I) is defined,
and m’’ (I) is undefined otherwise

(C, m) ⇓ m’

   Awkward Example
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                      (x,{x->5}) ⇓ 5   (3,{x->5}) ⇓ 3
                           (x+3,{x->5}) ⇓ 8

(5,{x->17}) ⇓ 5     (x:=x+3,{x->5}) ⇓ {x->8}
  (let x = 5 in (x:=x+3), {x -> 17}) ⇓ ??

   Awkward Example

Let in Command
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                      (x,{x->5}) ⇓ 5   (3,{x->5}) ⇓ 3
                           (x+3,{x->5}) ⇓ 8

(5,{x->17}) ⇓ 5     (x:=x+3,{x->5}) ⇓ {x->8}
  (let x = 5 in (x:=x+3), {x -> 17}) ⇓ {x->17}

   Awkward Example

Let in Command
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Comment

■ Simple Imperative Programming Language 
introduces variables implicitly through assignment

■ The let-in command introduces scoped variables 
explictly

■ Clash of constructs apparent in awkward 
semantics

   Awkward Example
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    Questions so far?



101

    Implementing Semantics
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Interpretation Versus Compilation

■ A compiler from language L1 to language L2 is a 
program that takes an L1 program and for each 
piece of code in L1 generates a piece of code in 
L2 of same meaning

■ An interpreter of L1 in L2 is an L2 program that 
executes the meaning of a given L1 program

■ Compiler would examine the body of a loop once; 
an interpreter would examine it every time the loop 
was executed

           Implementing Semantics
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Interpretation Versus Compilation

■ A compiler from language L1 to language L2 is a 
program that takes an L1 program and for each 
piece of code in L1 generates a piece of code in 
L2 of same meaning

■ An interpreter of L1 in L2 is an L2 program that 
executes the meaning of a given L1 program

■ Compiler would examine the body of a loop once; 
an interpreter would examine it every time the loop 
was executed

           Implementing Semantics
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Interpreter 

■ An Interpreter represents the operational 
semantics of a language L1 (source language) in 
the language of implementation L2 (target 
language)

■ Built incrementally
■ Start with literals
■ Variables
■ Primitive operations
■ Evaluation of expressions
■ Evaluation of commands/declarations

           Implementing Semantics
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Interpreter

■ Takes abstract syntax trees as input 
■ In simple cases could be just strings

■ One procedure for each syntactic category 
(nonterminal)
■ e.g., one for expressions, another for commands

■ From semantics to implementation:
■ If Natural Semantics used, tells how to compute 

final value from code
■ If Transition Semantics used, tells how to 

compute next “state”
■ To get final value, put in a loop

           Implementing Semantics
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Interpreter

■ Takes abstract syntax trees as input 
■ In simple cases could be just strings

■ One procedure for each syntactic category 
(nonterminal)
■ e.g., one for expressions, another for commands

■ From semantics to implementation:
■ If Natural Semantics used, tells how to compute 

final value from code
■ If Transition Semantics used, tells how to 

compute next “state”
■ To get final value, put in a loop

           Implementing Semantics
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Natural Semantics Example

■ compute_exp (Var(v), m) = look_up v m
■ compute_exp (Int(n), _) = Num (n)
■ …
■ compute_com(IfExp(b,c1,c2),m) =
       if compute_exp (b,m) = Bool(true)
       then compute_com (c1,m)
       else compute_com (c2,m)

           Implementing Semantics



108

Natural Semantics Example

■ compute_com(While(b,c), m) =
      if compute_exp (b,m) = Bool(false)
      then m
      else compute_com
              (While(b,c), compute_com(c,m))

■ May fail to terminate - exceed stack limits
■ Returns no useful information then

           Implementing Semantics
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    Questions?



110

   No Class Thursday for Midterm!


