Programming Languages and Compilers (CS 421)

Talia Ringer (they/them) 4218 SC, UIUC

<https://courses.grainger.illinois.edu/cs421/fa2023/>

Based heavily on slides by Elsa Gunter, which were based in part on slides by Mattox Beckman, as updated by Vikram Adve and Gul Agha

Midterm Study Guide

Questions before we start?

■ Expresses the **meaning** of syntax

- **Static** semantics:
	- Meaning based only on the form of the expression **without executing** it
	- Usually restricted to **type checking** / **type inference**
	- **Dynamic semantics:**
		- Describes meaning of **executing** a program
		- **■** Kinds: **operational**, **axiomatic**, **denotational**

$*$ 9 **Semantics**

- Expresses the **meaning** of syntax
- **Static** semantics:
	- Meaning based only on the form of the expression **without executing** it
	- Usually restricted to **type checking** / **type inference**
	- **Dynamic semantics:**
		- Describes meaning of **executing** a program
		- **■** Kinds: **operational**, **axiomatic**, **denotational**

- Expresses the **meaning** of syntax
- **Static** semantics:
	- Meaning based only on the form of the expression **without executing** it
	- Usually restricted to **type checking / type inference**
	- **Dynamic semantics:**
		- Describes meaning of **executing** a program
		- **■** Kinds: **operational**, **axiomatic**, **denotational**

Expresses the **meaning** of syntax

- **Static** semantics:
	- Meaning based only on the form of the expression **without executing** it
	- Usually restricted to **type checking** / **type inference**
- **Dynamic semantics:**
	- Describes meaning of **executing** a program
	- **■** Kinds: **operational**, **axiomatic**, **denotational**

Dynamic Semantics

■ Why so many **kinds** of dynamic semantics? ■ **Different languages** better suited to different NIIUS UI SCIIIAIIUCS
Different binde easte different to the se kinds of semantics

- **DITENTE ANNO SET VE UNITER ENT PUT** ■ Different kinds serve **different purposes**
- Usually restricted to **type checking** / **type inference** ■ Common to have **multiple** kinds and show how they **relate** to each other
- **Dynamic semantics:**
	- Describes meaning of **executing** a program
	- **■** Kinds: **operational**, **axiomatic**, **denotational**

What it is:

- Describe how to execute (implement) programs of language on a virtual machine, by describing **how to execute each program statement** (i.e., following the **structure** of the program) ■ Meaning of program is how its execution **changes the state** of the machine **■ Tradeoffs:**
	- Easy to **implement**
	- **Hard to reason about abstractly (without** thinking about implementation details)

What it is:

- Describe how to execute (implement) programs of language on a virtual machine, by describing **how to execute each program statement** (i.e., following the **structure** of the program) ■ Meaning of program is how its execution **changes the state** of the machine **■ Tradeoffs:**
	- Easy to **implement**
	- Hard to **reason about abstractly** (without thinking about implementation details)

■ **What it is**:

■ Also called a **Program Logic**

- Commonly **Floyd-Hoare logic**
- **These days, also separation logic**
- Logical system built from *axioms* and *inference* rules
- Often written as **pre-conditions** and **post-conditions** on programs

- Mainly suited to **imperative languages**
- Good for **external** reasoning

■ **What it is**:

■ Also called a **Program Logic**

- Commonly **Floyd-Hoare logic**
- **Farther Endingle 15 and 5 and 5 and 5 and 5 and 7 and**
- Logical system built from *axioms* and *inference* rules
- Often written as **pre-conditions** and **post-conditions** on programs

- Mainly suited to **imperative languages**
- Good for **external** reasoning

What it is:

■ Also called a **Program Logic**

- Commonly **Floyd-Hoare logic**
- **These days, also separation logic**
- Logical system built from *axioms* and *inference* rules
- Often written as **pre-conditions** and **post-conditions** on programs

- Mainly suited to **imperative languages**
- Good for **external** reasoning

Used to formally prove a **post-condition** (property) of the **state** (the values of the program variables) after the execution of program, assuming a **pre-condition** (another property) holds before execution ■ Written :

{Precondition} Program {Postcondition} ■ Source of idea of **loop invariant**

Used to formally prove a **post-condition** (property) of the **state** (the values of the program variables) after the execution of program, assuming a **pre-condition** (another property) holds before execution Written :

{Precondition} Program {Postcondition} ■ Source of idea of **loop invariant**

Used to formally prove a **post-condition** (property) of the **state** (the values of the program variables) after the execution of program, assuming a **pre-condition** (another property) holds before execution Written :

{Precondition} Program {Postcondition} Source of idea of **loop invariant**

Denotational Semantics

What it is:

- Construct function *M* assigning **mathematical meaning** to each program construct
	- via category theory, algebra, probability theory, topology, lambda calculus, …
- Meaning function is **compositional**: meaning of construct built from meaning of parts

■ **Tradeoffs:**

- Useful for **proving** properties of programs
- Doesn't help much with **implementation**

$*$ 22 **Semantics**

Denotational Semantics

What it is:

- Construct function M assigning **mathematical meaning** to each program construct
	- via category theory, algebra, probability theory, topology, lambda calculus, …
- Meaning function is **compositional**: meaning of construct built from meaning of parts

- Useful for **proving** properties of programs
- Doesn't help much with **implementation**

What it is:

- Describe how to execute (implement) programs of language on a virtual machine, by describing **how to execute each program statement** (i.e., following the **structure** of the program) ■ Meaning of program is how its execution **changes the state** of the machine **■ Tradeoffs:**
	- Easy to **implement**
	- Hard to **reason about abstractly** (without thinking about implementation details)

■ Can be **small step** or **big step**

- **Small step:** define meaning of one step of execution of a program statement at a time
- **Big step:** define meaning in terms of value of execution of whole program statement
- **Common to have both and relate them**

- Can be **small step** or **big step**
	- **Small step:** define meaning of one step of execution of a program statement at a time
		- **Big step:** define meaning in terms of value of execution of whole program statement
	- **Common to have both and relate them**

Natural (Big Step) Semantics

Natural Semantics

- Also known as **Structural Operational Semantics** or **Big Step Semantics**
- Provide **value** for a program by **rules** and **derivations**, similar to type derivations
- Rule conclusions look like:

 $(C, m) \Downarrow m'$ or $(E, m) \vee v$

Natural Semantics

- Also known as **Structural Operational Semantics** or **Big Step Semantics**
- Provide **value** for a program by **rules** and **derivations**, similar to type derivations
- Rule conclusions look like:

 $(C, m) \Downarrow m'$ or $(E, m) \Downarrow v$

- $I \in$ Identifiers
- $N \in$ Numerals
- **B** ::= true | false | **B** & **B** | **B** or **B** | not **B** | **E** < **E** | **E** = **E**
- **E** ::= N | I | **E** + **E** | **E** * **E** | **E E** | **E** | (**E**) **C** ::= skip | **C**; **C** | I := **E** | if **B** then **C** else **C** fi | while **B** do **C** od

- $I \in$ Identifiers
- $N \in$ Numerals
- **B** ::= true | false | **B** & **B** | **B** or **B** | not **B** | **E** < **E** | **E** = **E**
- **E** ::= N | I | **E** + **E** | **E** * **E** | **E E** | **E** | (**E**) **C** ::= skip | **C**; **C** | I := **E** | if **B** then **C** else **C** fi | while **B** do **C** od

- $I \in$ Identifiers
- $N \in$ Numerals
- **B** ::= true | false | **B** & **B** | **B** or **B** | not **B** | **E** < **E** | **E** = **E**
- **E** ::= N | I | **E** + **E** | **E** * **E** | **E E** | **E** | (**E**)
- **C** ::= skip | **C**; **C** | I := **E** | if **B** then **C** else **C** fi | while **B** do **C** od

- $I \in$ Identifiers
- $N \in$ Numerals
- **B** ::= true | false | **B** & **B** | **B** or **B** | not **B** | **E** < **E** | **E** = **E**
- **E** ::= N | I | **E** + **E** | **E** * **E** | **E E** | **E** | (**E**)
- **C** ::= skip | **C**; **C** | I := **E** | if **B** then **C** else **C** fi | while **B** do **C** od

Simple Imperative Language Semantics

True False

(true, m) \Downarrow true (false, m) \Downarrow false

Simple Imperative Language Semantics

(true, m) \Downarrow true (false, m) \Downarrow false

True False

Simple Imperative Language Semantics

$(B, m) \vee false$ $_{And-F} (B, m) \vee true (B', m) \vee b$ $_{And-T}$ $(B & B', m) \vee false$ $(B & B', m) \vee b$

 $(B, m) \vee true$ or-t $(B, m) \vee false$ $(B', m) \vee b$ or-F $\overline{(B \text{ or } B',\, m) \Downarrow \text{true}}$ $\overline{(B \text{ or } B',\, m) \Downarrow b}$

> $(B, m) \Downarrow$ true $_{\text{Not-T}}$ (not B, m) \sqrt{a} false (not B, m) \sqrt{b} true

Boolean combinators have the **standard** meaning

 $(B, m) \Downarrow$ false $_{\text{Not-F}}$

$(B, m) \vee false$ $_{And-F} (B, m) \vee true (B', m) \vee b$ $_{And-T}$ $(B, m) \Downarrow v$ Simple Imperative Language Semantics

 $(B & B', m) \vee false$ (B & B', m) \vee b

 $(B, m) \vee true$ or-t $(B, m) \vee false$ $(B', m) \vee b$ or-F $(B \text{ or } B', m) \Downarrow \text{true}$ (B or B', m) \Downarrow b

> $(B, m) \Downarrow$ true $_{\text{Not-T}}$ $(not B, m) \Downarrow false$ (not B, m) \Downarrow true

Boolean combinators have the **standard** meaning

 $(B, m) \Downarrow$ false $_{\text{Not-F}}$

 $(B, m) \vee false$ $_{And-F} (B, m) \vee true (B', m) \vee b$ $_{And-T}$ $(B & B', m) \Downarrow$ false $(B & B', m) \Downarrow b$

 $(B, m) \vee true$ or-t $(B, m) \vee false$ $(B', m) \vee b$ or-F $(B \text{ or } B', m) \Downarrow \text{true}$ (B or B', m) \Downarrow b

> $(B, m) \Downarrow$ true $_{\text{Not-T}}$ (not B, m) \Downarrow false (not B, m) \Downarrow true

Boolean combinators have the **standard** meaning

 (B, m) \Downarrow false $_{\text{Not-F}}$

$(E, m) \vee U$ $(E', m) \vee V$ $U \sim V = b$ $(E \sim E, m) \Downarrow b$ **Rel**

- \blacksquare By \blacksquare \blacktriangleright \blacksquare \blacksquare \blacksquare b, we mean: does (the meaning of) the relation \sim hold on the meaning of U and V?
- May be specified by a mathematical expression/equation or rules matching U and V

Relations like \lt , $>$, and = are defined in terms of their **primitive** meanings

$$
\frac{(E, m) \cup U \quad (E', m) \cup V \quad U \sim V = b}{(E \sim E', m) \cup b}
$$

By $U \sim V = b$, we mean: does (the meaning of) the relation \sim hold on the meaning of **U** and **V**? ■ May be specified by a mathematical expression/equation or rules matching **U** and **V**

> **Relations** like \lt , $>$, and = are defined in terms of their **primitive** meanings

$$
(E, m) \vee U \quad (E', m) \vee V \quad U \sim V = b
$$

By $U \sim V = b$, we mean: does (the meaning of) the relation \sim hold on the meaning of **U** and **V**? ■ May be specified by a mathematical expression/equation or rules matching **U** and **V**

> **Relations** like \lt , $>$, and = are defined in terms of their **primitive** meanings

$(E, m) \cup U$ $(E', m) \cup V$ $U \sim V = b$ (**E ~ E'**, m) ⇓ b **Rel**

By $U \sim V = b$, we mean: does (the meaning of) the relation \sim hold on the meaning of **U** and **V**? ■ May be specified by a mathematical expression/equation or rules matching **U** and **V**

> **Relations** like \lt , $>$, and = are defined in terms of their **primitive** meanings

$$
\frac{(E, m) \cup U \quad (E', m) \cup V \quad U \sim V = b}{(E \sim E', m) \cup b}
$$

- By $U \sim V = b$, we mean: does (the meaning of) the relation \sim hold on the meaning of **U** and **V**?
- May be specified by a mathematical expression/equation or rules matching **U** and **V**

Relations like \lt , $>$, and = are defined in terms of their **primitive** meanings

$(E, m) \cup U$ $(E', m) \cup V$ U op V = N (E op E', m) \Downarrow N **Arith**

where **N** is the specified value for **U op V**

Arithmetic expressions are defined **similarly**

(E, m) ⇓ U (E', m) ⇓ V **U op V = N** (E op E', m) \Downarrow N **Arith**

where **N** is the specified value for **U op V**

Arithmetic expressions are defined **similarly**

 $(C, m) \vee m'$ $(C', m') \vee m''$ $(C; C, m) \Downarrow m''$ **Seq**

Natural Semantics

$$
\frac{(C, m) \Downarrow m' \quad (C, m') \Downarrow m''}{(C, C', m) \Downarrow m''}
$$

If then else is split into two cases, one for **true** and one for **false**

 $(B, m) \vee true \ (C, m) \vee m'$ (if B then C else C' fi, m) \Downarrow m' **If-T**

 $(B, m) \Downarrow$ false $(C, m) \Downarrow m'$ (if B then C else C' fi, m) \Downarrow m' **If-F**

If then else is split into two cases, one for **true** and one for **false**

 (B, m) ⇓ **true** (**C**, m) ⇓ m' (if B then **C** else C' fi, m) \Downarrow m' **If-T**

 $(B, m) \Downarrow$ false $(C, m) \Downarrow m'$ (if B then C else C' fi, m) \Downarrow m' **If-F**

If then else is split into two cases, one for **true** and one for **false**

$$
(C, m) \Downarrow m'
$$

 (B, m) ⇓ **true** (**C**, m) ⇓ m' (if B then **C** else C' fi, m) \Downarrow m' **If-T**

$$
\frac{(B, m) \Downarrow \text{false} (C', m) \Downarrow m'}{(\text{if B then C else C' fi, m) } \Downarrow m'}
$$

Natural Semantics

$(B, m) \Downarrow$ false (while B do C od, m) \Downarrow m $(B, m) \Downarrow$ true $(C, m) \vee m'$ (while B do C od, m') ↓ m" while-т (while B do C od, m) \Downarrow m" $(C, m) \vee m'$ **While-F** Simple Imperative Language Semantics

While is likewise split into two cases, one for **true** and one for **false**

(B, m) ⇓ **false** (while **B** do C od, m) \Downarrow m $(B, m) \Downarrow$ true $(C, m) \vee m'$ (while B do C od, m') ↓ m" while-т (while B do C od, m) \Downarrow m" $(C, m) \vee m'$ **While-F** Simple Imperative Language Semantics

While is likewise split into two cases, one for **true** and one for **false**

(B, m) ⇓ **false** (while **B** do C od, **m**) \Downarrow **m** $(B, m) \Downarrow$ true $(C, m) \vee m'$ (while B do C od, m') ↓ m" while-т (while B do C od, m) \Downarrow m" $(C, m) \vee m'$ **While-F** Simple Imperative Language Semantics

While is likewise split into two cases, one for **true** and one for **false**

$(B, m) \Downarrow$ false (while B do C od, m) \Downarrow m **(B, m)** ⇓ **true** $(C, m) \Downarrow m'$ (while В do С od, m') ↓ m" while-т (while **B** do C od, **m**) \Downarrow m" $(C, m) \vee m'$ **While-F** Simple Imperative Language Semantics

While is likewise split into two cases, one for **true** and one for **false**

$(B, m) \Downarrow$ false (while B do C od, m) \Downarrow m $(B, m) \Downarrow$ true **(C, m)** ⇓ **m'** (while В do С od, m') ↓ m" while-т (while B do C od, m) \Downarrow m'' $(C, m) \vee m'$ **While-F** Simple Imperative Language Semantics **While** is likewise split into two cases,

one for **true** and one for **false**

$(B, m) \Downarrow$ false (while B do C od, m) \Downarrow m $(B, m) \Downarrow$ true $(C, m) \vee m'$ (while **B do C od, m')**↓ m"_{while-T} (**while B do C od**, m) ⇓ m'' $(C, m) \vee m'$ **While-F** Simple Imperative Language Semantics **While** is likewise split into two cases, one for **true** and one for **false**

$(B, m) \Downarrow$ false (while B do C od, m) \Downarrow m $(B, m) \Downarrow$ true $(C, m) \vee m'$ (while B do C od, m') \Downarrow **m''** while-T (while B do C od, m) \Downarrow **m''** $(C, m) \vee m'$ **While-F** Simple Imperative Language Semantics **While** is likewise split into two cases,

one for **true** and one for **false**

Example 20 GEGARDING CONSIDERING THE SEMINATION OF AND COMMAND, USING the **natural semantics** for the language that we just defined. Want to determine the **semantics** of this

(if $x > 5$ then $y := 2 + 3$ else $y := 3 + 4$ fi, {x -> 7}) ⇓ **??**

Example 12 (2,3%) First, **if-then-else rule**, but we don't and is the output of \mathbf{r} (2+3, {x->7})⇓5 know if the guard is **true** or **false** yet.

$$
(if x > 5 then y := 2 + 3 else y := 3 + 4 fi,{x -> 7}) \cup ?
$$

Example 12 (2,3%) First, **if-then-else rule**, but we don't and is the output of \mathbf{r} (2+3, {x->7})⇓5 know if the guard is **true** or **false** yet.

$$
\frac{(x > 5, {x \rightarrow 7}) \cup ??}{(if x > 5 then y := 2 + 3 else y := 3 + 4 fi,}
$$

$$
{x \rightarrow 7} \cup ??
$$

The guard is a **relation.**

$$
\frac{(x > 5, {x -> 7}) \cup ??}{(if x > 5 then y := 2 + 3 else y := 3 + 4 fi, {x -> 7}) \cup ??}
$$

The guard is a **relation**.

$$
\frac{(x, \{x>-7\}) \cup \text{??} \quad (5, \{x-7\}) \cup \text{??} \quad \text{??} > \text{??} = \text{??} \quad \text{Rel}}{\text{(x > 5, \{x -gt; 7\})} \cup \text{??}} \qquad \text{If } \text{??} \qquad \text{If } \text{??} \quad \text{If } \text{?} > \text{5} \text{ then } \text{y} := 2 + 3 \text{ else } \text{y} := 3 + 4 \text{ fi,} \qquad \text{if } \text{x -} > 7\} \cup \text{??}
$$

of each side of the relation … So we determine the meaning

$$
\frac{(x, \{x>-7\}) \cup \mathbf{?} \times \mathbf{?}}{(x > 5, \{x -7\}) \cup \mathbf{?} \times \mathbf{?
$$

if the meaning of the state of the sta $(2+3, 3, 4)$ We need the meaning of the

$$
rac{...}{(x > 5, {x -> 7}) \cup true} (y := 2 + 3, {x -> 7})
$$

\n
$$
rac{(x > 5, {x -> 7}) \cup true}{(if x > 5 then y := 2 + 3 else y := 3 + 4 fi, {x -> 7}) \cup ??}
$$

\n
$$
{x -> 7} \cup ??
$$

Awkward Example

$$
\frac{(E, m) \Downarrow v (C, m[I<-v]) \Downarrow m'}{(let I = E in C, m) \Downarrow m'}
$$

Where m" (y) = m' (y) for
$$
y \neq I
$$
 and
m" (I) = m (I) if m(I) is defined,
and m" (I) is undefined otherwise

Let in Command

$$
\frac{(x,\{x-5\}) \cup 5 \quad (3,\{x-5\}) \cup 3}{(x+3,\{x-5\}) \cup 8}
$$
\n
$$
\frac{(5,\{x-17\}) \cup 5 \quad (x:=x+3,\{x-5\}) \cup \{x-8\}}{(let x = 5 in (x:=x+3), \{x -5, 17\}) \cup \mathbf{?}
$$

Awkward Example

Let in Command

$(x, {x->5}) \cup 5 (3, {x->5}) \cup 3$ $(x+3, {x->5}) \cup 8$ $(5,\{x->17\}) \cup 5$ $(x:=x+3,\{x->5\}) \cup \{x->8\}$ (let $x = 5$ in $(x:=x+3)$, $\{x - > 17\}$) $\cup \{x->17\}$

Awkward Example

Comment

- Simple Imperative Programming Language introduces variables **implicitly** through assignment
- The let-in command introduces scoped variables **explictly**
- **Clash** of constructs apparent in **awkward** semantics

Interpretation Versus Compilation

- A **compiler** from language L1 to language L2 is a program that takes an L1 program and for each piece of code in L1 **generates** a piece of **code** in L2 of **same meaning**
- An **interpreter** of L1 in L2 is an L2 program that **executes the meaning** of a given L1 program
- Compiler would examine the body of a loop once; an interpreter would examine it every time the loop was executed

Interpretation Versus Compilation

- A **compiler** from language L1 to language L2 is a program that takes an L1 program and for each piece of code in L1 **generates** a piece of **code** in L2 of **same meaning**
- An **interpreter** of L1 in L2 is an L2 program that **executes the meaning** of a given L1 program
- Compiler would examine the body of a loop once; an interpreter would examine it every time the loop was executed

Interpreter

- An **Interpreter** represents the **operational semantics** of a language L1 (**source** language) in the language of implementation L2 (**target** language)
- Built incrementally
	- Start with literals
	- Variables
	- Primitive operations
	- Evaluation of expressions
	- Evaluation of commands/declarations

Interpreter

- Takes abstract syntax trees as input
	- In simple cases could be just strings
- One procedure for each syntactic category (nonterminal)
	- e.g., one for expressions, another for commands
- From semantics to implementation:
	- If Natural Semantics used, tells how to compute final value from code
	- If Transition Semantics used, tells how to compute next "state"
		- To get final value, put in a loop

Interpreter

- Takes abstract syntax trees as input
	- In simple cases could be just strings
- One procedure for each syntactic category (nonterminal)
	- e.g., one for expressions, another for commands
- From semantics to implementation:
	- If Natural Semantics used, tells how to compute final value from code
	- If Transition Semantics used, tells how to compute next "state"
		- \blacksquare To get final value, put in a loop

Natural Semantics Example

- $compute_exp (Var(v), m) = look_up v m$ compute_exp (Int(n), $)$ = Num (n)
- $compute_com(IFExp(b, c1, c2), m) =$ if compute_exp $(b,m) =$ Bool(true) then compute_com (c1,m) else compute_com (c2,m)

■ …

Natural Semantics Example

 $compute_com(While(b,c), m) =$ if compute_exp $(b,m) =$ Bool(false) then m else compute_com (While(b,c), compute_com(c,m))

May fail to terminate - exceed stack limits Returns no useful information then

No Class Thursday for Midterm!