
1

Programming Languages and
Compilers (CS 421)

Talia Ringer (they/them)
4218 SC, UIUC
https://courses.grainger.illinois.edu/cs421/fa2023/

Based heavily on slides by Elsa Gunter, which were
based in part on slides by Mattox Beckman, as updated
by Vikram Adve and Gul Agha

https://courses.grainger.illinois.edu/cs421/fa2023/

2

 Midterm Study Guide

Objectives for Today

* 3

I

New
Programming

Paradigm

III

Language
Semantics

Three Main Topics of the Course

* 4

I

New
Programming

Paradigm

III

Language
Semantics

Three Main Topics of the Course

II

Language
Translation

Objectives for Today

* 5

Operational
Semantics

Lambda
Calculus

Axiomatic
Semantics

 III : Language Semantics

Objectives for Today

* 6

Operational
Semantics

Lambda
Calculus

Axiomatic
Semantics

CS422 CS426
CS477

Objectives for Today

7

 Questions before we start?

8

 Semantics

* 9

Semantics

■ Expresses the meaning of syntax
■ Static semantics:

■ Meaning based only on the form of the
expression without executing it

■ Usually restricted to type checking / type
inference

■ Dynamic semantics:
■ Describes meaning of executing a program
■ Kinds: operational, axiomatic, denotational

Semantics

* 10

Semantics

■ Expresses the meaning of syntax
■ Static semantics:

■ Meaning based only on the form of the
expression without executing it

■ Usually restricted to type checking / type
inference

■ Dynamic semantics:
■ Describes meaning of executing a program
■ Kinds: operational, axiomatic, denotational

Semantics

* 11

Semantics

■ Expresses the meaning of syntax
■ Static semantics:

■ Meaning based only on the form of the
expression without executing it

■ Usually restricted to type checking / type
inference

■ Dynamic semantics:
■ Describes meaning of executing a program
■ Kinds: operational, axiomatic, denotational

Semantics

* 12

Semantics

■ Expresses the meaning of syntax
■ Static semantics:

■ Meaning based only on the form of the
expression without executing it

■ Usually restricted to type checking / type
inference

■ Dynamic semantics:
■ Describes meaning of executing a program
■ Kinds: operational, axiomatic, denotational

Semantics

■ Expresses the meaning of syntax
■ Static semantics:

■ Meaning based only on the form of the
expression without executing it

■ Usually restricted to type checking / type
inference

■ Dynamic semantics:
■ Describes meaning of executing a program
■ Kinds: operational, axiomatic, denotational

* 13

Dynamic Semantics

■ Why so many kinds of dynamic semantics?
■ Different languages better suited to different

kinds of semantics
■ Different kinds serve different purposes
■ Common to have multiple kinds and show how

they relate to each other

Semantics

* 14

Operational Semantics

■ What it is:
■ Describe how to execute (implement) programs

of language on a virtual machine, by describing
how to execute each program statement
(i.e., following the structure of the program)

■ Meaning of program is how its execution
changes the state of the machine

■ Tradeoffs:
■ Easy to implement
■ Hard to reason about abstractly (without

thinking about implementation details)

Semantics

* 15

Operational Semantics

■ What it is:
■ Describe how to execute (implement) programs

of language on a virtual machine, by describing
how to execute each program statement
(i.e., following the structure of the program)

■ Meaning of program is how its execution
changes the state of the machine

■ Tradeoffs:
■ Easy to implement
■ Hard to reason about abstractly (without

thinking about implementation details)

Semantics

* 16

Axiomatic Semantics

■ What it is:
■ Also called a Program Logic

■ Commonly Floyd-Hoare logic
■ These days, also separation logic

■ Logical system built from axioms and inference
rules

■ Often written as pre-conditions and
post-conditions on programs

■ Tradeoffs:
■ Mainly suited to imperative languages
■ Good for external reasoning

Semantics

* 17

Axiomatic Semantics

■ What it is:
■ Also called a Program Logic

■ Commonly Floyd-Hoare logic
■ These days, also separation logic

■ Logical system built from axioms and inference
rules

■ Often written as pre-conditions and
post-conditions on programs

■ Tradeoffs:
■ Mainly suited to imperative languages
■ Good for external reasoning

Semantics

* 18

Axiomatic Semantics

■ What it is:
■ Also called a Program Logic

■ Commonly Floyd-Hoare logic
■ These days, also separation logic

■ Logical system built from axioms and inference
rules

■ Often written as pre-conditions and
post-conditions on programs

■ Tradeoffs:
■ Mainly suited to imperative languages
■ Good for external reasoning

Semantics

* 19

Axiomatic Semantics

■ Used to formally prove a post-condition
(property) of the state (the values of the
program variables) after the execution of
program, assuming a pre-condition (another
property) holds before execution

■ Written :
{Precondition} Program {Postcondition}

■ Source of idea of loop invariant

Semantics

* 20

Axiomatic Semantics

■ Used to formally prove a post-condition
(property) of the state (the values of the
program variables) after the execution of
program, assuming a pre-condition (another
property) holds before execution

■ Written :
{Precondition} Program {Postcondition}

■ Source of idea of loop invariant

Semantics

* 21

Axiomatic Semantics

■ Used to formally prove a post-condition
(property) of the state (the values of the
program variables) after the execution of
program, assuming a pre-condition (another
property) holds before execution

■ Written :
{Precondition} Program {Postcondition}

■ Source of idea of loop invariant

Semantics

* 22

Denotational Semantics

■ What it is:
■ Construct function M assigning mathematical

meaning to each program construct
■ via category theory, algebra, probability

theory, topology, lambda calculus, …
■ Meaning function is compositional: meaning of

construct built from meaning of parts
■ Tradeoffs:

■ Useful for proving properties of programs
■ Doesn’t help much with implementation

Semantics

* 23

Denotational Semantics

■ What it is:
■ Construct function M assigning mathematical

meaning to each program construct
■ via category theory, algebra, probability

theory, topology, lambda calculus, …
■ Meaning function is compositional: meaning of

construct built from meaning of parts
■ Tradeoffs:

■ Useful for proving properties of programs
■ Doesn’t help much with implementation

Semantics

* 24

Operational Semantics

■ What it is:
■ Describe how to execute (implement) programs

of language on a virtual machine, by describing
how to execute each program statement
(i.e., following the structure of the program)

■ Meaning of program is how its execution
changes the state of the machine

■ Tradeoffs:
■ Easy to implement
■ Hard to reason about abstractly (without

thinking about implementation details)

Semantics

* 25

Operational Semantics

■ Can be small step or big step
■ Small step: define meaning of one step of

execution of a program statement at a time
■ Big step: define meaning in terms of value of

execution of whole program statement
■ Common to have both and relate them

Semantics

* 26

Operational Semantics

■ Can be small step or big step
■ Small step: define meaning of one step of

execution of a program statement at a time
■ Big step: define meaning in terms of value of

execution of whole program statement
■ Common to have both and relate them

 Semantics

27

 Natural (Big Step) Semantics

28

Natural Semantics

■ Also known as Structural Operational
Semantics or Big Step Semantics

■ Provide value for a program by rules and
derivations, similar to type derivations

■ Rule conclusions look like:
(C, m) ⇓ m’

or
(E, m) ⇓ v

Natural Semantics

29

Natural Semantics

■ Also known as Structural Operational
Semantics or Big Step Semantics

■ Provide value for a program by rules and
derivations, similar to type derivations

■ Rule conclusions look like:
(C, m) ⇓ m’

or
(E, m) ⇓ v

Natural Semantics

30

Simple Imperative Language Syntax

I ∈ Identifiers
N ∈ Numerals
B ::= true | false | B & B | B or B |
 not B | E < E | E = E
E ::= N | I | E + E | E * E | E - E | - E | (E)
C ::= skip | C; C | I := E |
 if B then C else C fi | while B do C od

Natural Semantics

31

Simple Imperative Language Syntax

I ∈ Identifiers
N ∈ Numerals
B ::= true | false | B & B | B or B |
 not B | E < E | E = E
E ::= N | I | E + E | E * E | E - E | - E | (E)
C ::= skip | C; C | I := E |
 if B then C else C fi | while B do C od

Natural Semantics

32

Simple Imperative Language Syntax

I ∈ Identifiers
N ∈ Numerals
B ::= true | false | B & B | B or B |
 not B | E < E | E = E
E ::= N | I | E + E | E * E | E - E | - E | (E)
C ::= skip | C; C | I := E |
 if B then C else C fi | while B do C od

Natural Semantics

33

Simple Imperative Language Syntax

I ∈ Identifiers
N ∈ Numerals
B ::= true | false | B & B | B or B |
 not B | E < E | E = E
E ::= N | I | E + E | E * E | E - E | - E | (E)
C ::= skip | C; C | I := E |
 if B then C else C fi | while B do C od

Natural Semantics

34

Simple Imperative Language Semantics

 (I, m) ⇓ m(I)

 (N, m) ⇓ N

 (true, m) ⇓ true (false, m) ⇓ false
True False

Num

Id
(E, m) ⇓ v

Natural Semantics

Look up
identifiers

35

 (I, m) ⇓ m(I)

 (N, m) ⇓ N

 (true, m) ⇓ true (false, m) ⇓ false
True False

Num

Id
(E, m) ⇓ v

Simple Imperative Language Semantics

Natural Semantics

Numerals
are literals

36

 (I, m) ⇓ m(I)

 (N, m) ⇓ N

 (true, m) ⇓ true (false, m) ⇓ false
True False

Num

Id
(E, m) ⇓ v

(B, m) ⇓ v

Simple Imperative Language Semantics

Natural Semantics

Boolean atoms
are literals too

37

 Questions so far?

Natural Semantics

38

 (B, m) ⇓ false (B, m) ⇓ true (B’, m) ⇓ b
 (B & B’, m) ⇓ false (B & B’, m) ⇓ b

 (B, m) ⇓ true (B, m) ⇓ false (B’, m) ⇓ b
(B or B’, m) ⇓ true (B or B’, m) ⇓ b

 (B, m) ⇓ true (B, m) ⇓ false
 (not B, m) ⇓ false (not B, m) ⇓ true

And-F And-T

Or-T Or-F

Not-T Not-F

(B, m) ⇓ v

Simple Imperative Language Semantics

Natural Semantics

Boolean combinators have
the standard meaning

39

 (B, m) ⇓ false (B, m) ⇓ true (B’, m) ⇓ b
 (B & B’, m) ⇓ false (B & B’, m) ⇓ b

 (B, m) ⇓ true (B, m) ⇓ false (B’, m) ⇓ b
(B or B’, m) ⇓ true (B or B’, m) ⇓ b

 (B, m) ⇓ true (B, m) ⇓ false
 (not B, m) ⇓ false (not B, m) ⇓ true

And-F And-T

Or-T Or-F

Not-T Not-F

(B, m) ⇓ v

Boolean combinators have
the standard meaning

Simple Imperative Language Semantics

Natural Semantics

40

 (B, m) ⇓ false (B, m) ⇓ true (B’, m) ⇓ b
 (B & B’, m) ⇓ false (B & B’, m) ⇓ b

 (B, m) ⇓ true (B, m) ⇓ false (B’, m) ⇓ b
(B or B’, m) ⇓ true (B or B’, m) ⇓ b

 (B, m) ⇓ true (B, m) ⇓ false
 (not B, m) ⇓ false (not B, m) ⇓ true

And-F And-T

Or-T Or-F

Not-T Not-F

(B, m) ⇓ v

Boolean combinators have
the standard meaning

Simple Imperative Language Semantics

Natural Semantics

41

 (E, m) ⇓ U (E’, m) ⇓ V U ~ V = b
(E ~ E’, m) ⇓ b

■ By U ~ V = b, we mean: does (the meaning of)
the relation ~ hold on the meaning of U and V?

■ May be specified by a mathematical
expression/equation or rules matching U and V

Rel

(E, m) ⇓ v

Simple Imperative Language Semantics

Natural Semantics

Relations like <, >, and = are defined in
terms of their primitive meanings

42

 (E, m) ⇓ U (E’, m) ⇓ V U ~ V = b
(E ~ E’, m) ⇓ b

■ By U ~ V = b, we mean: does (the meaning of)
the relation ~ hold on the meaning of U and V?

■ May be specified by a mathematical
expression/equation or rules matching U and V

Rel

(E, m) ⇓ v

Relations like <, >, and = are defined in
terms of their primitive meanings

Simple Imperative Language Semantics

Natural Semantics

43

 (E, m) ⇓ U (E’, m) ⇓ V U ~ V = b
(E ~ E’, m) ⇓ b

■ By U ~ V = b, we mean: does (the meaning of)
the relation ~ hold on the meaning of U and V?

■ May be specified by a mathematical
expression/equation or rules matching U and V

Rel

(E, m) ⇓ v

Relations like <, >, and = are defined in
terms of their primitive meanings

Simple Imperative Language Semantics

Natural Semantics

44

 (E, m) ⇓ U (E’, m) ⇓ V U ~ V = b
(E ~ E’, m) ⇓ b

■ By U ~ V = b, we mean: does (the meaning of)
the relation ~ hold on the meaning of U and V?

■ May be specified by a mathematical
expression/equation or rules matching U and V

Rel

(E, m) ⇓ v

Relations like <, >, and = are defined in
terms of their primitive meanings

Simple Imperative Language Semantics

Natural Semantics

45

 (E, m) ⇓ U (E’, m) ⇓ V U ~ V = b
(E ~ E’, m) ⇓ b

■ By U ~ V = b, we mean: does (the meaning of)
the relation ~ hold on the meaning of U and V?

■ May be specified by a mathematical
expression/equation or rules matching U and V

Rel

(E, m) ⇓ v

Relations like <, >, and = are defined in
terms of their primitive meanings

Simple Imperative Language Semantics

Natural Semantics

46

 (E, m) ⇓ U (E’, m) ⇓ V U op V = N
(E op E’, m) ⇓ N

where N is the specified value for U op V

Arith

(E, m) ⇓ v

Simple Imperative Language Semantics

Natural Semantics

Arithmetic expressions
are defined similarly

47

 (E, m) ⇓ U (E’, m) ⇓ V U op V = N
(E op E’, m) ⇓ N

where N is the specified value for U op V

Arith

(E, m) ⇓ v

Arithmetic expressions
are defined similarly

Simple Imperative Language Semantics

Natural Semantics

48

 Questions so far?

Natural Semantics

49

 (skip, m) ⇓ m

 (E, m) ⇓ v
 (I := E, m) ⇓ m[I<-v]

 (C, m) ⇓ m’ (C’, m’) ⇓ m’’
 (C; C’, m) ⇓ m’’

Skip
(C, m) ⇓m’

Assign

Seq

Simple Imperative Language Semantics

Natural Semantics

Commands evaluate to
maps of variables

(environments or stacks)
rather than to values

50

 (skip, m) ⇓ m

 (E, m) ⇓ v
 (I := E, m) ⇓ m[I<-v]

 (C, m) ⇓ m’ (C’, m’) ⇓ m’’
 (C; C’, m) ⇓ m’’

Skip
(C, m) ⇓ m’

Assign

Seq

Simple Imperative Language Semantics

Natural Semantics

Skip doesn’t
change the state

51

 (skip, m) ⇓ m

 (E, m) ⇓ v
 (I := E, m) ⇓ m[I<-v]

 (C, m) ⇓ m’ (C’, m’) ⇓ m’’
 (C; C’, m) ⇓ m’’

Skip
(C, m) ⇓ m’

Assign

Seq

Assign updates the state with a new
mapping of identifier I to value v

Simple Imperative Language Semantics

Natural Semantics

52

 (skip, m) ⇓ m

 (E, m) ⇓ v
 (I := E, m) ⇓ m[I<-v]

 (C, m) ⇓ m’ (C’, m’) ⇓ m’’
 (C; C’, m) ⇓ m’’

Skip
(C, m) ⇓ m’

Assign

Seq

Assign updates the state with a new
mapping of identifier I to value v

Simple Imperative Language Semantics

Natural Semantics

53

 (skip, m) ⇓ m

 (E, m) ⇓ v
 (I := E, m) ⇓ m[I<-v]

 (C, m) ⇓ m’ (C’, m’) ⇓ m’’
 (C; C’, m) ⇓ m’’

Skip
(C, m) ⇓ m’

Assign

Seq

Simple Imperative Language Semantics

Natural Semantics

Sequencing has the
usual meaning

54

 (skip, m) ⇓ m

 (E, m) ⇓ v
 (I := E, m) ⇓ m[I<-v]

 (C, m) ⇓ m’ (C’, m’) ⇓ m’’
 (C; C’, m) ⇓ m’’

Skip
(C, m) ⇓ m’

Assign

Seq

Simple Imperative Language Semantics

Natural Semantics

Sequencing has the
usual meaning

55

 (skip, m) ⇓ m

 (E, m) ⇓ v
 (I := E, m) ⇓ m[I<-v]

 (C, m) ⇓ m’ (C’, m’) ⇓ m’’
 (C; C’, m) ⇓ m’’

Skip
(C, m) ⇓ m’

Assign

Seq

Simple Imperative Language Semantics

Natural Semantics

Sequencing has the
usual meaning

56

 (skip, m) ⇓ m

 (E, m) ⇓ v
 (I := E, m) ⇓ m[I<-v]

 (C, m) ⇓ m’ (C’, m’) ⇓ m’’
 (C; C’, m) ⇓ m’’

Skip
(C, m) ⇓ m’

Assign

Seq

Simple Imperative Language Semantics

Natural Semantics

Sequencing has the
usual meaning

57

 (B, m) ⇓ true (C, m) ⇓ m’
(if B then C else C’ fi, m) ⇓ m’

 (B, m) ⇓ false (C’, m) ⇓ m’
 (if B then C else C’ fi, m) ⇓ m’

(C, m) ⇓ m’

If-T

If-F

Simple Imperative Language Semantics

Natural Semantics

If then else is split into two cases,
one for true and one for false

58

 (B, m) ⇓ true (C, m) ⇓ m’
(if B then C else C’ fi, m) ⇓ m’

 (B, m) ⇓ false (C’, m) ⇓ m’
 (if B then C else C’ fi, m) ⇓ m’

(C, m) ⇓ m’

If-T

If-F

Simple Imperative Language Semantics

Natural Semantics

If then else is split into two cases,
one for true and one for false

59

 (B, m) ⇓ true (C, m) ⇓ m’
(if B then C else C’ fi, m) ⇓ m’

 (B, m) ⇓ false (C’, m) ⇓ m’
 (if B then C else C’ fi, m) ⇓ m’

(C, m) ⇓ m’

If-T

If-F

If then else is split into two cases,
one for true and one for false

Simple Imperative Language Semantics

Natural Semantics

60

 (B, m) ⇓ false
 (while B do C od, m) ⇓ m

 (B, m) ⇓ true
 (C, m) ⇓ m’

(while B do C od, m’) ⇓ m’’
(while B do C od, m) ⇓ m’’

(C, m) ⇓ m’

While-F

While-T

Simple Imperative Language Semantics

Natural Semantics

While is likewise split into two cases,
one for true and one for false

61

 (B, m) ⇓ false
 (while B do C od, m) ⇓ m

 (B, m) ⇓ true
 (C, m) ⇓ m’

(while B do C od, m’) ⇓ m’’
(while B do C od, m) ⇓ m’’

(C, m) ⇓ m’

While-F

While-T

Simple Imperative Language Semantics

Natural Semantics

While is likewise split into two cases,
one for true and one for false

62

 (B, m) ⇓ false
 (while B do C od, m) ⇓ m

 (B, m) ⇓ true
 (C, m) ⇓ m’

(while B do C od, m’) ⇓ m’’
(while B do C od, m) ⇓ m’’

(C, m) ⇓ m’

While-F

While-T

Simple Imperative Language Semantics

Natural Semantics

While is likewise split into two cases,
one for true and one for false

63

 (B, m) ⇓ false
 (while B do C od, m) ⇓ m

 (B, m) ⇓ true
 (C, m) ⇓ m’

(while B do C od, m’) ⇓ m’’
(while B do C od, m) ⇓ m’’

(C, m) ⇓ m’

While-F

While-T

Simple Imperative Language Semantics

Natural Semantics

While is likewise split into two cases,
one for true and one for false

64

 (B, m) ⇓ false
 (while B do C od, m) ⇓ m

 (B, m) ⇓ true
 (C, m) ⇓ m’

(while B do C od, m’) ⇓ m’’
(while B do C od, m) ⇓ m’’

(C, m) ⇓ m’

While-F

While-T

Simple Imperative Language Semantics

Natural Semantics

While is likewise split into two cases,
one for true and one for false

65

 (B, m) ⇓ false
 (while B do C od, m) ⇓ m

 (B, m) ⇓ true
 (C, m) ⇓ m’

(while B do C od, m’)⇓ m’’
(while B do C od, m) ⇓ m’’

(C, m) ⇓ m’

While-F

While-T

Simple Imperative Language Semantics

Natural Semantics

While is likewise split into two cases,
one for true and one for false

66

 (B, m) ⇓ false
 (while B do C od, m) ⇓ m

 (B, m) ⇓ true
 (C, m) ⇓ m’

 (while B do C od, m’) ⇓ m’’
 (while B do C od, m) ⇓ m’’

(C, m) ⇓ m’

While-F

While-T

Simple Imperative Language Semantics

Natural Semantics

While is likewise split into two cases,
one for true and one for false

67

 Questions so far?

68

 Example Derivation

69

Example

 (2,{x->7})⇓2 (3,{x->7}) ⇓3
 (2+3, {x->7})⇓5

(x,{x->7})⇓7 (5,{x->7})⇓5 (y:= 2 + 3, {x-> 7}
 (x > 5, {x -> 7})⇓true ⇓{x- >7, y->5}

 (if x > 5 then y := 2 + 3 else y := 3 + 4 fi,
 {x -> 7}) ⇓ ??

Example Derivation

Want to determine the semantics of this
command, using the natural semantics

for the language that we just defined.

70

 (2,{x->7})⇓2 (3,{x->7}) ⇓3
 (2+3, {x->7})⇓5

(x,{x->7})⇓7 (5,{x->7})⇓5 (y:= 2 + 3, {x-> 7}
 (x > 5, {x -> 7})⇓true ⇓{x- >7, y->5}

 (if x > 5 then y := 2 + 3 else y := 3 + 4 fi,
 {x -> 7}) ⇓ ??

If-??

Example

Example Derivation

First, if-then-else rule, but we don’t
know if the guard is true or false yet.

71

 (2,{x->7})⇓2 (3,{x->7}) ⇓3
 (2+3, {x->7})⇓5

(x,{x->7})⇓7 (5,{x->7})⇓5 (y:= 2 + 3, {x-> 7}
 (x > 5, {x -> 7}) ⇓ ?? ⇓{x- >7, y->5}

 (if x > 5 then y := 2 + 3 else y := 3 + 4 fi,
 {x -> 7}) ⇓ ??

If-??

First, if-then-else rule, but we don’t
know if the guard is true or false yet.

Example

Example Derivation

72

 (2,{x->7})⇓2 (3,{x->7}) ⇓3
 (2+3, {x->7})⇓5

(x,{x->7})⇓7 (5,{x->7})⇓5 (y:= 2 + 3, {x-> 7}
 (x > 5, {x -> 7}) ⇓ ?? ⇓{x- >7, y->5}

 (if x > 5 then y := 2 + 3 else y := 3 + 4 fi,
 {x -> 7}) ⇓ ??

If-??

The guard is a relation.

Example

Example Derivation

73

 (2+3, {x->7})⇓5
 (2+3, {x->7})⇓5

 (x, {x->7})⇓?? (5, {x->7})⇓?? ?? > ?? = ??
 (x > 5, {x -> 7}) ⇓ ?? ⇓{x- >7, y->5}
 (if x > 5 then y := 2 + 3 else y := 3 + 4 fi,
 {x -> 7}) ⇓ ??

If-??

Rel

Example

Example Derivation

The guard is a relation.

74

 (2+3, {x->7})⇓5
 (2+3, {x->7})⇓5

 (x, {x->7})⇓?? (5, {x->7})⇓?? ?? > ?? = ??
 (x > 5, {x -> 7}) ⇓ ?? ⇓{x- >7, y->5}
 (if x > 5 then y := 2 + 3 else y := 3 + 4 fi,
 {x -> 7}) ⇓ ??

If-??

Rel

Example

Example Derivation

So we determine the meaning
of each side of the relation …

75

 (2+3, {x->7})⇓5
 (2+3, {x->7})⇓5

 (x, {x->7})⇓7 (5, {x->7})⇓?? 7 > ?? = ??
 (x > 5, {x -> 7}) ⇓ ?? ⇓{x- >7, y->5}
 (if x > 5 then y := 2 + 3 else y := 3 + 4 fi,
 {x -> 7}) ⇓ ??

If-??

Rel

Example

Example Derivation

So we determine the meaning
of each side of the relation …

 Id

76

 (2+3, {x->7})⇓5
 (2+3, {x->7})⇓5

 (x, {x->7})⇓7 (5, {x->7})⇓5 7 > 5 = ??
 (x > 5, {x -> 7}) ⇓ ?? ⇓{x- >7, y->5}
 (if x > 5 then y := 2 + 3 else y := 3 + 4 fi,
 {x -> 7}) ⇓ ??

If-??

Rel

Example

Example Derivation

So we determine the meaning
of each side of the relation …

 Id Num

77

 (2+3, {x->7})⇓5
 (2+3, {x->7})⇓5

 (x, {x->7})⇓7 (5, {x->7})⇓5 7 > 5 = ??
 (x > 5, {x -> 7}) ⇓ ?? ⇓{x- >7, y->5}
 (if x > 5 then y := 2 + 3 else y := 3 + 4 fi,
 {x -> 7}) ⇓ ??

If-??

Rel

Example

Example Derivation

 Id Num

Then we use the primitive
meaning of the > relation

78

 (2+3, {x->7})⇓5
 (2+3, {x->7})⇓5

 (x, {x->7})⇓7 (5, {x->7})⇓5 7 > 5 = true
 (x > 5, {x -> 7}) ⇓ ?? ⇓{x- >7, y->5}
 (if x > 5 then y := 2 + 3 else y := 3 + 4 fi,
 {x -> 7}) ⇓ ??

If-??

Rel

Example

Example Derivation

 Id Num

Then we use the primitive
meaning of the > relation

79

 (2+3, {x->7})⇓5
 (2+3, {x->7})⇓5

 (x, {x->7})⇓7 (5, {x->7})⇓5 7 > 5 = true
 (x > 5, {x -> 7}) ⇓ ?? ⇓{x- >7, y->5}
 (if x > 5 then y := 2 + 3 else y := 3 + 4 fi,
 {x -> 7}) ⇓ ??

If-??

Rel

Example

Example Derivation

 Id Num

Now, for the if-then-else rule,
we know that the guard is true.

80

 (2+3, {x->7})⇓5
 (2+3, {x->7})⇓5

 (x, {x->7})⇓7 (5, {x->7})⇓5 7 > 5 = true
 (x > 5, {x -> 7}) ⇓ true ⇓{x- >7, y->5}
 (if x > 5 then y := 2 + 3 else y := 3 + 4 fi,
 {x -> 7}) ⇓ ??

If-T

Rel

Example

Example Derivation

 Id Num

Now, for the if-then-else rule,
we know that the guard is true.

81

 (2+3, {x->7})⇓5
 (2+3, {x->7})⇓5

 (x, {x->7})⇓7 (5, {x->7})⇓5 7 > 5 = true
 (x > 5, {x -> 7}) ⇓ true ⇓{x- >7, y->5}
 (if x > 5 then y := 2 + 3 else y := 3 + 4 fi,
 {x -> 7}) ⇓ ??

If-T

Rel

Example

Example Derivation

 Id Num

We are low on slide room, so let’s
squish what we’re done with

82

 (2+3, {x->7})⇓5
 (2+3, {x->7})⇓5

 …
 (x > 5, {x -> 7}) ⇓ true ⇓{x- >7, y->5}
 (if x > 5 then y := 2 + 3 else y := 3 + 4 fi,
 {x -> 7}) ⇓ ??

If-T

Rel

We are low on slide room, so let’s
squish what we’re done with

Example

Example Derivation

83

 (2+3, {x->7})⇓5
 (2+3, {x->7})⇓5

 …
 (x > 5, {x -> 7}) ⇓ true ⇓{x- >7, y->5}
 (if x > 5 then y := 2 + 3 else y := 3 + 4 fi,
 {x -> 7}) ⇓ ??

If-T

Rel

Example

Example Derivation

Now what?

84

 (2+3, {x->7})⇓5
 (2+3, {x->7})⇓5

 …
 (x > 5, {x -> 7}) ⇓ true ⇓{x- >7, y->5}
 (if x > 5 then y := 2 + 3 else y := 3 + 4 fi,
 {x -> 7}) ⇓ ??

If-T

Rel

Example

Example Derivation

Now what?

85

 (2+3, {x->7})⇓5
 (2+3, {x->7})⇓5

 … (y := 2 + 3, {x -> 7})
 (x > 5, {x -> 7}) ⇓ true ⇓ ??
 (if x > 5 then y := 2 + 3 else y := 3 + 4 fi,
 {x -> 7}) ⇓ ??

If-T

Rel

Example

Example Derivation

We need the meaning of the
if branch, not the else branch

86

 (2+3, {x->7})⇓5
 (2+3, {x->(2+3, {x->7})⇓??5

 … (y := 2 + 3, {x -> 7})
 (x > 5, {x -> 7}) ⇓ true ⇓ ??
 (if x > 5 then y := 2 + 3 else y := 3 + 4 fi,
 {x -> 7}) ⇓ ??

If-T

Rel

Example

Example Derivation

This is an assignment

Assign

87

 (2, {x->7})⇓?? (3, {x->7})⇓?? ?? + ?? = ??
 (2+3, {x->(2+3, {x->7})⇓??5

 … (y := 2 + 3, {x -> 7})
 (x > 5, {x -> 7}) ⇓ true ⇓ ??
 (if x > 5 then y := 2 + 3 else y := 3 + 4 fi,
 {x -> 7}) ⇓ ??

If-T

Rel

Example

Example Derivation

The body is an
arithmetic expression

Assign

Arith

88

 (2, {x->7})⇓2 (3, {x->7})⇓3 2 + 3 = ??
 (2+3, {x->(2+3, {x->7})⇓??5

 … (y := 2 + 3, {x -> 7})
 (x > 5, {x -> 7}) ⇓ true ⇓ ??
 (if x > 5 then y := 2 + 3 else y := 3 + 4 fi,
 {x -> 7}) ⇓ ??

If-T

Rel

Example

Example Derivation

Assign

Arith

 Num Num

Determine meaning
of each side

89

 (2, {x->7})⇓2 (3, {x->7})⇓3 2 + 3 = 5
 (2+3, {x->(2+3, {x->7})⇓??5

 … (y := 2 + 3, {x -> 7})
 (x > 5, {x -> 7}) ⇓ true ⇓ ??
 (if x > 5 then y := 2 + 3 else y := 3 + 4 fi,
 {x -> 7}) ⇓ ??

If-T

Rel

Example

Example Derivation

Assign

Arith

 Num Num

Then use the primitive
meaning of the operation

90

 (2, {x->7})⇓2 (3, {x->7})⇓3 2 + 3 = 5
 (2+3, {x->(2+3, {x->7})⇓??5

 … (y := 2 + 3, {x -> 7})
 (x > 5, {x -> 7}) ⇓ true ⇓ ??
 (if x > 5 then y := 2 + 3 else y := 3 + 4 fi,
 {x -> 7}) ⇓ ??

If-T

Rel

Example

Example Derivation

Assign

Arith

 Num Num

We can now fill in the
remaining details

91

 (2, {x->7})⇓2 (3, {x->7})⇓3 2 + 3 = 5
 (2+3, {x->(2+3, {x->7})⇓55

 … (y := 2 + 3, {x -> 7})
 (x > 5, {x -> 7}) ⇓ true ⇓ ??
 (if x > 5 then y := 2 + 3 else y := 3 + 4 fi,
 {x -> 7}) ⇓ ??

If-T

Rel

Example

Example Derivation

Assign

Arith

 Num Num

We can now fill in the
remaining details

92

 (2, {x->7})⇓2 (3, {x->7})⇓3 2 + 3 = 5
 (2+3, {x->(2+3, {x->7})⇓55

 … (y := 2 + 3, {x -> 7})
 (x > 5, {x -> 7}) ⇓ true ⇓ {x->7, y->5}
 (if x > 5 then y := 2 + 3 else y := 3 + 4 fi,
 {x -> 7}) ⇓ ??

If-T

Rel

Example

Example Derivation

Assign

Arith

 Num Num

We can now fill in the
remaining details

93

 (2, {x->7})⇓2 (3, {x->7})⇓3 2 + 3 = 5
 (2+3, {x->(2+3, {x->7})⇓55

 … (y := 2 + 3, {x -> 7})
 (x > 5, {x -> 7}) ⇓ true ⇓ {x->7, y->5}
 (if x > 5 then y := 2 + 3 else y := 3 + 4 fi,
 {x -> 7}) ⇓ {x->7, y->5}

If-T

Rel

Example

Example Derivation

Assign

Arith

 Num Num

We can now fill in the
remaining details

94

 Questions so far?

95

 Awkward Example

96

Let in Command

(E, m) ⇓v (C, m[I<-v]) ⇓ m’
(let I = E in C, m) ⇓ m’ ’

Where m’’ (y) = m’ (y) for y≠ I and
m’’ (I) = m (I) if m(I) is defined,
and m’’ (I) is undefined otherwise

(C, m) ⇓ m’

 Awkward Example

97

 (x,{x->5}) ⇓ 5 (3,{x->5}) ⇓ 3
 (x+3,{x->5}) ⇓ 8

(5,{x->17}) ⇓ 5 (x:=x+3,{x->5}) ⇓ {x->8}
 (let x = 5 in (x:=x+3), {x -> 17}) ⇓ ??

 Awkward Example

Let in Command

98

 (x,{x->5}) ⇓ 5 (3,{x->5}) ⇓ 3
 (x+3,{x->5}) ⇓ 8

(5,{x->17}) ⇓ 5 (x:=x+3,{x->5}) ⇓ {x->8}
 (let x = 5 in (x:=x+3), {x -> 17}) ⇓ {x->17}

 Awkward Example

Let in Command

99

Comment

■ Simple Imperative Programming Language
introduces variables implicitly through assignment

■ The let-in command introduces scoped variables
explictly

■ Clash of constructs apparent in awkward
semantics

 Awkward Example

100

 Questions so far?

101

 Implementing Semantics

102

Interpretation Versus Compilation

■ A compiler from language L1 to language L2 is a
program that takes an L1 program and for each
piece of code in L1 generates a piece of code in
L2 of same meaning

■ An interpreter of L1 in L2 is an L2 program that
executes the meaning of a given L1 program

■ Compiler would examine the body of a loop once;
an interpreter would examine it every time the loop
was executed

 Implementing Semantics

103

Interpretation Versus Compilation

■ A compiler from language L1 to language L2 is a
program that takes an L1 program and for each
piece of code in L1 generates a piece of code in
L2 of same meaning

■ An interpreter of L1 in L2 is an L2 program that
executes the meaning of a given L1 program

■ Compiler would examine the body of a loop once;
an interpreter would examine it every time the loop
was executed

 Implementing Semantics

104

Interpreter

■ An Interpreter represents the operational
semantics of a language L1 (source language) in
the language of implementation L2 (target
language)

■ Built incrementally
■ Start with literals
■ Variables
■ Primitive operations
■ Evaluation of expressions
■ Evaluation of commands/declarations

 Implementing Semantics

105

Interpreter

■ Takes abstract syntax trees as input
■ In simple cases could be just strings

■ One procedure for each syntactic category
(nonterminal)
■ e.g., one for expressions, another for commands

■ From semantics to implementation:
■ If Natural Semantics used, tells how to compute

final value from code
■ If Transition Semantics used, tells how to

compute next “state”
■ To get final value, put in a loop

 Implementing Semantics

106

Interpreter

■ Takes abstract syntax trees as input
■ In simple cases could be just strings

■ One procedure for each syntactic category
(nonterminal)
■ e.g., one for expressions, another for commands

■ From semantics to implementation:
■ If Natural Semantics used, tells how to compute

final value from code
■ If Transition Semantics used, tells how to

compute next “state”
■ To get final value, put in a loop

 Implementing Semantics

107

Natural Semantics Example

■ compute_exp (Var(v), m) = look_up v m
■ compute_exp (Int(n), _) = Num (n)
■ …
■ compute_com(IfExp(b,c1,c2),m) =
 if compute_exp (b,m) = Bool(true)
 then compute_com (c1,m)
 else compute_com (c2,m)

 Implementing Semantics

108

Natural Semantics Example

■ compute_com(While(b,c), m) =
 if compute_exp (b,m) = Bool(false)
 then m
 else compute_com
 (While(b,c), compute_com(c,m))

■ May fail to terminate - exceed stack limits
■ Returns no useful information then

 Implementing Semantics

109

 Questions?

110

 No Class Thursday for Midterm!

