Large Mars Model
Umaa Rebbapragada (JPL PI)
Hannah Kerner (ASU, PI), Mirali Purohit (ASU Grad Student), Steven Lu (Co-I, JPL), Serina Diniega (Co-I, JPL)
March 26, 2024
NASA SMD AI Workshop 2024
Team
Jet Propulsion Laboratory
Umaa Rebbapragada
Data Scientist & Group Supervisor
Machine Learning & Instrument autonomy (MLIA)
Steven Lu
Data Scientist & Planetary Data Service (PDS) Imaging Node Technologist
Hannah Kerner
Assistant Professor, School of Computing and Augmented Intelligence
Mirali Purohit
Ph.D. Candidate, School of Computing and Augmented Intelligence
Arizona State University
Serina Diniega
Planetary Geologist
jpl.nasa.gov
Machine Learning (ML) Applied to Martian Datasets
3
Science Task | Year | Datasets | Paper / Datasets | Datasets |
DL-Based Terrain Classification for Rover Missions (SPOC) | 2016 | MSL Navcam | Rothrock et al., AIAA SPACE | |
Surface Change Detection using Conv. AutoEncoders and Transfer Learning | 2019 | CTX, HiRISE | Kerner et al., IEEE Journal of Selected Topics in Applied Earth Obs and Remote Sens. | |
Novelty Detection in Multi-spectral Data | 2019 | MSL Mastcam | Kerner et al., AAAI | Zenodo |
DoMars16K for Landform Classification on Planetary Surfaces | 2020 | CTX | Wilhelm et al., Remote Sensing | Zenodo |
Deep Mars: CNN Classification of rover and orbital images | 2018, 2021 | HiRISE, Mastcam, MAHLI | Wagstaff et al., AAAI (2 papers) | Zenodo |
AI4Mars: CNN Mars terrain classification | 2021 | MSL Navcam & Mastcam & MER Navcam | Swan et al., CVPRW | NASA Open Data Portal |
Global Map of Martian Frost | 2022 | CTX, HiRISE, MCS, THEMIS, CRISM | Doran et al. PSIDA | JPL Dataverse |
S5Mars for Semantic Segmentation on Mars | 2023 | MSL Mastcam | Zhang et al., arXiv:2207.01200 | S5Mars.github.io |
Cone Segmentation | 2023 | CTX | Purohit et al. arXiv:2311.08657 | Zenodo |
Map of Martian Frost Cap | 2023 | MARCI | Archarya et al., Icarus | |
jpl.nasa.gov
PDS Imaging Node Content-based Search
4
MSL Rover Data
HiRISE Data
jpl.nasa.gov
Global Map of Martian Frost
Thermal Data
Visible Data
MCS
HiRISE
CTX
Adjusted�Posterior
GPR
CNN
Posterior probability
In [0,1]
Uniform Temperature Grid
Global Frost Map
Spectra
CRISM
Landforms
THEMIS
CNN
Posterior probability
Each frost map = (lat, lon, Ls, frost confidence)
Convolutional Neural Net
Gaussian Process Regression
jpl.nasa.gov
Global Map of Martian Frost
6
Labelbox interface for annotating images
HiRISE Data
jpl.nasa.gov
Current Workflow for Mars Models
7
MRO
Archive
fine-tuning
Team 1 wants impact-excavated sub-surface ice anywhere on Mars
Team 3 wants defrosted gullies
Team 2 wants new dust devil tracks in hi-res Mars imagery
Catalog 1
Catalog 2
Catalog 3
DL Network 1
Fine-tuned model
Fine-tuned model
Fine-tuned model
DL Network 2
DL Network 3
test images
jpl.nasa.gov
Driving Questions: Can a Custom Foundation Model…
8
jpl.nasa.gov
Potential of Foundation Model
9
MRO
Archive
Pre-training
Team 1 wants impact-excavated sub-surface ice anywhere on Mars
Team 3 wants defrosted gullies
Team 2 wants new dust devil tracks in hi-res Mars imagery
Image set 1
Image set 2
Image set 3
Large Mars Model
Fine-tuned model
Fine-tuned model
Fine-tuned model
test images
jpl.nasa.gov
Large Mars Model
10
jpl.nasa.gov
Masked Auto-Encoder (MAE)
11
He et al. CVPR 2022
jpl.nasa.gov
Planned Work
12
Bring current benchmarks to SOTA
Self-supervised Pre-training
Validation: ML & science-specific
Label Efficiency & Zero-shot Performance
jpl.nasa.gov
Applying SOTA to Benchmarks
Model | Pre- training | Finetuning | Accuracy | Precision | Recall | F1-Score |
Inception V3 | - | Random initialization of weights | 0.9112 | 0.9168 | 0.9112 | 0.9088 |
ImageNet | Using pre-trained model as a feature extractor | 0.9067 | 0.909 | 0.9067 | 0.9048 | |
ImageNet | End-to-end fine-tuning | 0.9577 | 0.9594 | 0.9577 | 0.9572 | |
ViT | - | Random initialization of weights | 0.8167 | 0.8328 | 0.8167 | 0.8197 |
DoMars16 | End-to-end fine-tuning | 0.9015 | 0.901 | 0.9015 | 0.9009 | |
ImageNet | End-to-end fine-tuning | 0.9859 | 0.986 | 0.9859 | 0.986 |
Model | Pre- training | Finetuning | Accuracy | Precision | Recall | F1-Score |
Inception V3 | - | Random initialization of weights | 0.6626 | 0.8598 | 0.6626 | 0.7233 |
ImageNet | Using pre-trained model as a feature extractor | 0.7485 | 0.8526 | 0.7485 | 0.7844 | |
ImageNet | End-to-end fine-tuning | 0.7172 | 0.899 | 0.7172 | 0.7723 | |
ViT | - | Random initialization of weights | 0.431 | 0.4579 | 0.4236 | 0.4401 |
DoMars16 | End-to-end fine-tuning | 0.4646 | 0.7995 | 0.4646 | 0.5475 | |
ImageNet | End-to-end fine-tuning | 0.8728 | 0.9218 | 0.8728 | 0.8847 |
Martian Frost
HiRISENet
jpl.nasa.gov
14
jpl.nasa.gov