CSE 5539: �Depth Estimation
LiDAR-based 3D perception
[Source: Graham Murdoch/Popular Science]
LiDAR:
What is the problem?
A car: $ 20K
16-line: $ 8K
64-line: $ 75K
LiDAR vs. camera-based depth
Camera-based depth estimation
Pseudo-LiDAR representation
Stereo Depth Estimation
Another Look
Pseudo-LiDAR framework
Yan Wang, Wei-Lun Chao, Divyansh Garg, Bharath Hariharan, Mark Campbell, and Kilian Q. Weinberger,
"Pseudo-LiDAR from Visual Depth Estimation: Bridging the Gap in 3D Object Detection for Autonomous Driving," CVPR, 2019
Depth estimation models
3D object detection models
Trivial? but not really!
[Source: Mask R-CNN, ICCV 2017]
[Source: VoxelNet, CVPR 2018]
Experimental results (AP:BEV / AP:3D)
[4] X. Chen, K. Kundu, Z. Zhang, H. Ma, S. Fidler, and R. Urtasun. Monocular 3d object detection for autonomous driving. In CVPR, 2016.
[5] X. Chen, K. Kundu, Y. Zhu, A. G. Berneshawi, H. Ma, S. Fidler, and R. Urtasun. 3d object proposals for accurate object class detection. In NIPS, 2015.
[16] J. Ku, M. Mozifian, J. Lee, A. Harakeh, and S. Waslander. Joint 3d proposal generation and object detection from view aggregation. In IROS, 2018.
[23] C. R. Qi, W. Liu, C. Wu, H. Su, and L. J. Guibas. Frustum pointnets for 3d object detection from rgb-d data. In CVPR, 2018.
[30] B. Xu and Z. Chen. Multi-level fusion based 3d object detection from monocular images. In CVPR, 2018.
~300% improvement
LiDAR
pseudo-LiDAR
Depth-map
Experimental results (AP:BEV / AP:3D)
[4] X. Chen, K. Kundu, Z. Zhang, H. Ma, S. Fidler, and R. Urtasun. Monocular 3d object detection for autonomous driving. In CVPR, 2016.
[5] X. Chen, K. Kundu, Y. Zhu, A. G. Berneshawi, H. Ma, S. Fidler, and R. Urtasun. 3d object proposals for accurate object class detection. In NIPS, 2015.
[16] J. Ku, M. Mozifian, J. Lee, A. Harakeh, and S. Waslander. Joint 3d proposal generation and object detection from view aggregation. In IROS, 2018.
[23] C. R. Qi, W. Liu, C. Wu, H. Su, and L. J. Guibas. Frustum pointnets for 3d object detection from rgb-d data. In CVPR, 2018.
[30] B. Xu and Z. Chen. Multi-level fusion based 3d object detection from monocular images. In CVPR, 2018.
Improvement upon pseudo-LiDAR
Stereo depth estimation
=
Il
Ir
D
Z
disparity
depth
Stereo depth estimation
Disparity Map
Left
Right
disparity
Depth Map
Stereo depth estimation
Left
Right
Probability
Disparity
Stereo depth estimation
Left
Right
Neural
Net
Prob.
Probability
Disparity
Stereo depth estimation
=
Il
Ir
D
Z
disparity
depth
Improved stereo depth estimation
=
Il
Ir
D
Z
Optimizing the depth error
disparity
depth
Improved stereo depth estimation
Il
Ir
Z
Stereo depth network (SDN)
Optimizing the depth error
depth
Separated training
Depth
estimation
Left Image
Right Image
Depth loss
Depth map
Detection results
Object detection loss
3D object
detection
Point cloud/Voxel
Non differentiable
conversion
End-to-end training
Depth
estimation
Change of Representation
Left Image
Right Image
Detection results
Object detection loss
Depth loss
Depth map
Point cloud/Voxel
3D object
detection
Experimental results (AP: BEV; moderate)
Yurong You*, Yan Wang*, Wei-Lun Chao*, Divyansh Garg, Geoff Pleiss, Bharath Hariharan, Mark Campbell, and Kilian Q. Weinberger, "Pseudo-LiDAR++: Accurate Depth for 3D Object Detection in Autonomous Driving,”
ICLR, 2020
IoU = 0.5
IoU = 0.7
54
77
90
20
56
88
Stereo
depth
map
PL
LiDAR
Stereo
depth
map
PL
84
64
PL++
PL++
LiDAR
Experimental results (AP: BEV; moderate)
Rui Qian*, Divyansh Garg*, Yan Wang, Yurong You, Serge Belongie, Bharath Hariharan, Mark Campbell, Kilian Q. Weinberger, and Wei-Lun Chao, "End-to-end Pseudo-LiDAR for Image-Based 3D Object Detection,"
CVPR, 2020
IoU = 0.5
IoU = 0.7
54
77
84
90
20
56
64
88
Stereo
depth
map
PL
PL++
LiDAR
Stereo
depth
map
PL
PL++
85
66
E2E-PL
E2E-PL
LiDAR
Multi-sensor fusion (depth completion/correction)
4-line LiDAR
Graph-based Depth Correction (GDC)
Graph-based depth correction (GDC)
Experimental results (AP: BEV; moderate)
54
77
84
85
90
20
56
64
66
88
Stereo
depth
map
PL
PL++
E2E-PL
LiDAR
Stereo
depth
map
PL
PL++
E2E-PL
88
77
PL++
(GDC)
PL++
(GDC)
LiDAR
Yurong You*, Yan Wang*, Wei-Lun Chao*, Divyansh Garg, Geoff Pleiss, Bharath Hariharan, Mark Campbell, and Kilian Q. Weinberger, "Pseudo-LiDAR++: Accurate Depth for 3D Object Detection in Autonomous Driving,”
ICLR, 2020
IoU = 0.5
IoU = 0.7