Generative Models and Style Transfer
Mengdi Fan, Xinyu Zhou
Outlines
2
Autonomous Driving
Motivation
Data generating
Winter ⇄ Summer
Day ⇄ Night
https://github.com/mingyuliutw/UNIT
3
GAN
Generative Adversarial Nets
Ian J. Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair, Aaron Courville, Yoshua Bengio
Département d’informatique et de recherche opérationnelle
Université de Montré al
Montré al, QC H3C 3J7
NIPS 2014
4
Generative Adversarial Nets (GAN)
Generator
Discriminator
REAL
FAKE
5
Generative Adversarial Nets (GAN)
Generator
Discriminator
REAL
FAKE
6
Training Discriminator
Generator
Discriminator
REAL
FAKE
Maximize
7
Training Generator
Generator
Discriminator
REAL
FAKE
Minimize
8
Minimax objective function
GAN
https://jonathan-hui.medium.com/gan-why-it-is-so-hard-to-train-generative-advisory-networks-819a86b3750b
Adversarial loss
9
Image-to-Image Translation
Generator
10
CycleCAN
Unpaired Image-to-Image Translation using Cycle-Consistent Adversarial Networks
Jun-Yan Zhu, Taesung Park, Phillip Isola, Alexei A. Efros
Berkeley AI Research (BAIR) laboratory, UC Berkeley
ICCV 2017
arXiv:1703.10593
11
Unpaired Data
CycleCAN
X
Y
Mapping function G: X → Y
12
Adversarial Loss
CycleCAN
Generator
Discriminator
REAL
FAKE
13
Formulation
CycleCAN
cycle consistent
14
Adversarial Loss
CycleCAN
Generator
Discriminator
REAL
FAKE
Generator
Discriminator
REAL
FAKE
15
Formulation
CycleCAN
16
Formulation
CycleCAN
Forward cycle consistency
Backward cycle consistency
17
Full objective
CycleCAN
18
CUT
Contrastive Learning for Unpaired Image-to-Image Translation
Taesung Park, Alexei A. Efros, Richard Zhang, Jun-Yan Zhu
UC Berkeley, Adobe Research
ECCV 2020
arXiv:2007.15651
19
Formulation
CUT
cycle consistent
20
Formulation
CUT
21
Formulation
CUT
22
Patchwise Contrastive Loss
CUT
23
Patchwise Contrastive Loss
CUT
24
Internal vs External Patches
CUT
25
Identity Loss
CUT
26
Full objective
Adversarial loss
CUT
PatchNCE loss
identity loss
27
Full objective
CUT
identity loss
28
Evaluation
CUT
29
Ablation Study
CUT
30
Ablation Study
CUT
31
Multimodal Unsupervised Image-to-Image Translation
by Xun Huang, Ming-Yu Liu, Serge Belongie, Jan Kautz
32
Image-To-Image Translation
33
Unimodal vs Multimodal translation
Unimodal
Multimodal
34
CycleGAN and UNIT
CycleGAN
UNIT
Liu, Ming-Yu, Thomas Breuel, and Jan Kautz. "Unsupervised image-to-image translation networks." Advances in neural information processing systems 30 (2017).
35
UNIT: Training framework
36
Cycle consistency implies deterministic translations
37
Disentangled latent space
38
Loss function
39
Adversarial Loss
D2 is the discriminator to distinguish the translation image and real image in X2
40
Overall Training Objective
41
Theoretical result
42
Results:
43
Results:
44
Thank you!
45